Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 15, 2022
Accepted October 5, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Enhancement analysis of turbulent flow and heat transfer of supercritical CO2 in a static mixer with three helical blades
Engineering and Technology Research Center of Liaoning Province for Chemical Static-mixing Reaction, School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, P. R. China
Korean Journal of Chemical Engineering, January 2023, 40(1), 79-90(12), 10.1007/s11814-022-1312-z
Download PDF
Abstract
Supercritical CO2 has excellent flow and heat transfer characteristics, but studies are lacking on the heat transfer characteristics of static mixers using it as a working medium. To obtain the heat transfer enhancement mechanism of supercritical CO2 within static mixers with three helical blades (TKSM), the flow and heat transfer characteristics of supercritical CO2 in horizontal and vertically upward of TKSM were determined by three-dimensional steadystate numerical simulation at Re=7,900-22,385, respectively. With other parameters fixed, lower heat flux, inlet temperature, operating pressure, or higher mass flow corresponds to higher heat transfer coefficients (h). The orthogonal test revealed that mass flow has the greatest effect on heat transfer. Besides, the results showed that the comprehensive performance evaluation criteria (PEC) of TKSM were 1.18-1.64 times and 1.25-1.47 times of Kenics static mixer (KSM) in two different states. Considering the local deterioration of the horizontal flow, the vertically upward flow was recommended with uniform temperature distributions. Compared with the horizontal flow, the heat transfer capacity of TKSM in the upward flow increases by 92.64%-119.63%, whereas the buoyancy effect decreases by 99.83%- 99.97%.
References
Zendehboudi A, Ye ZL, Hafner A, Andresenc T, Skaugen G, Int. J. Heat Mass Transf., 178, 121641 (2021)
Ehsan MM, Guan Z, Klimenko AY, Renew. Sust. Energ. Rev., 92, 658 (2018)
Ge YT, Tassou SA, Santosa ID, Tsamos K, Appl. Energy, 160, 973 (2015)
Liao SM, Zhao TS, Int. J. Heat Mass Transf., 45, 5025 (2002)
Dang CB, Hihara E, Int. J. Refrig. -Rev. Int. Froid, 27, 736 (2004)
Liu XX, Xu XX, Liu C, Zhang SJ, He JC, Dang CB, Appl. Therm. Eng., 181, 115987 (2020)
Zhu XJ, Zhang RZ, Yu X, Cao MG, Ren YX, Energies, 13, 3502 (2020)
Zhang GW, Hu P, Chen LX, Liu MH, Appl. Therm. Eng., 143, 1101 (2018)
Yan CS, Xu JL, Zhu BG, Liu GL, Materials, 13, 723 (2020)
Bai WJ, Xu XX, Wu YY, CIESC J., 67, 1244 (2016)
Xiang MR, Guo JF, Huai XL, Cheng KY, Cui XY, Zhang Z, Zhang J, J. Eng. Thermophy-rus., 38, 1929 (2017)
Zhao ZH, Shandong Univ. (2019).
Yan CS, Xu JL, Acta Phys. Sin., 69, 136 (2020)
Wang JY, Guan ZQ, Gurgenci H, Veeraragavan A, Kang X, Hooman K, Int. J. Therm. Sci., 138, 190 (2019)
Zhuang XR, Xu XH, Yang Z, Zhao YX, Yu P, Acta Phys. Sin., 70, 176 (2021)
Wang SX, Zhang W, Niu ZY, Xu JL, CIECS J., 64, 3917 (2013)
Wang KZ, Xu XX, Wu YY, Liu C, Dang CB, J. Supercrit. Fluids, 99, 112 (2015)
Wang KZ, Xu XX, Liu C, Bai WJ, Dang CB, Int. J. Heat Mass Transf., 108, 1645 (2017)
Yang M, Appl. Therm. Eng., 109, 685 (2016)
Liu XX, Shan H, Zhang SJ, Xu XX, Liu C, J. Eng. Thermophys-rus., 41, 55 (2020)
Liu XX, Ye J, Xu XX, Liu C, Wang KZ, Li HR, Bai WJ, CIESC J., 67, 120 (2016)
Zhao HJ, Li XW, Wu XX, J. Supercrit. Fluids, 127, 48 (2017)
Cheng J, North China Electric Power Univ. (2020).
Ankudinov VB, Kurganov VA, High Temp.-High Press., 19, 870 (1982)
Shiralkar BS, Peter G, J. Heat Transf. -Trans. ASME, 91, 27 (1969)
Wang Z, Xu R, Xiong C, Jiang P, J. Tsinghua Univ., 58, 1101 (2018)
Bae YY, Kim HY, Yoo TH, Int. J. Heat Fluid Flow, 32, 340 (2011)
Regner M, Östergren K, TräGåRdh C, Chem. Eng. Sci., 61, 6133 (2006)
Jones SC, Sotiropoulos F, Amirtharajah A, J. Environ. Eng.-ASCE, 125, 5 (2015)
Ghanem A, Lemenand T, Valle DD, Peerhossaini H, Chem. Eng. Res. Des., 92, 205 (2014)
Thakur RK, Vial C, Nigam KDP, Nauman EB, Djelveh G, Chem. Eng. Res. Des., 81, 787 (2003)
Li WG, Yu ZB, Wang Y, Li YL, Therm. Sci. Eng. Progress, 31, 101285 (2022)
Simões PC, Afonso B, Fernandes J, Mota JPB, J. Supercrit. Fluids, 43, 477 (2008)
Lisboa PF, Fernandes J, Simões PC, Mota JPB, Saatdjian E, J. Supercrit. Fluids, 55, 107 (2010)
Meng HB, Wang F, Yu YF, Song MY, Wu JH, Ind. Eng. Chem. Res., 53, 4084 (2014)
Meng HB, Song MY, Yu YF, Wang F, Wu JH, Can. J. Chem. Eng., 93, 1849 (2015)
Meng HB, Zhu GX, Yu YF, Wang ZY, Wu JH, Int. J. Heat Mass Transf., 99, 647 (2016)
Meng HB, Han MQ, Yu YF, Wang ZY, Wu JH, Int. J. Heat Mass Transf., 156, 119788 (2020)
Meng HB, Wang JB, Yu YF, Wang ZY, Wu JH, Chin. J. Process Eng., 22, 338 (2022)
Meng HB, Hao YN, Yu YF, Li ZG, Song SN, Wu JH, Korean J. Chem. Eng., 37, 1859 (2020)
Wu JH, Chinese Patent, 200,510,045,606.8 (2007).
Menter FR, AIAA J., 32, 1598 (1994)
Meng HB, Meng T, Yu YF, Wang ZY, Wu JH, Int. J. Heat Mass Transf., 194, 123006 (2022)
McEltigot DM, Jackson JD, Nucl. Eng. Des., 232, 327 (2004)
Wang L, Pan YC, Lee JD, Wang Y, Fu BR, Pan C, Int. J. Heat Mass Transf., 159, 120136 (2020)
Lin ZM, Sun DL, Wang LB, Heat Mass Transf., 45, 1351 (2009)
Song KW, Wang LB, Prog. Comput Fluid Dyn., 8, 496 (2008)
Zhu BG, Wu XM, Zhang L, Sun EH, Zhang HS, Xu JL, CIECS J., 70, 1282 (2019)
Gong B, Zhang J, Zhang CM, Wu JH, J. Beijing University Chem. Technol., 35, 84 (2008)
Ehsan MM, Guan Z, Klimenko AY, Renew. Sust. Energ. Rev., 92, 658 (2018)
Ge YT, Tassou SA, Santosa ID, Tsamos K, Appl. Energy, 160, 973 (2015)
Liao SM, Zhao TS, Int. J. Heat Mass Transf., 45, 5025 (2002)
Dang CB, Hihara E, Int. J. Refrig. -Rev. Int. Froid, 27, 736 (2004)
Liu XX, Xu XX, Liu C, Zhang SJ, He JC, Dang CB, Appl. Therm. Eng., 181, 115987 (2020)
Zhu XJ, Zhang RZ, Yu X, Cao MG, Ren YX, Energies, 13, 3502 (2020)
Zhang GW, Hu P, Chen LX, Liu MH, Appl. Therm. Eng., 143, 1101 (2018)
Yan CS, Xu JL, Zhu BG, Liu GL, Materials, 13, 723 (2020)
Bai WJ, Xu XX, Wu YY, CIESC J., 67, 1244 (2016)
Xiang MR, Guo JF, Huai XL, Cheng KY, Cui XY, Zhang Z, Zhang J, J. Eng. Thermophy-rus., 38, 1929 (2017)
Zhao ZH, Shandong Univ. (2019).
Yan CS, Xu JL, Acta Phys. Sin., 69, 136 (2020)
Wang JY, Guan ZQ, Gurgenci H, Veeraragavan A, Kang X, Hooman K, Int. J. Therm. Sci., 138, 190 (2019)
Zhuang XR, Xu XH, Yang Z, Zhao YX, Yu P, Acta Phys. Sin., 70, 176 (2021)
Wang SX, Zhang W, Niu ZY, Xu JL, CIECS J., 64, 3917 (2013)
Wang KZ, Xu XX, Wu YY, Liu C, Dang CB, J. Supercrit. Fluids, 99, 112 (2015)
Wang KZ, Xu XX, Liu C, Bai WJ, Dang CB, Int. J. Heat Mass Transf., 108, 1645 (2017)
Yang M, Appl. Therm. Eng., 109, 685 (2016)
Liu XX, Shan H, Zhang SJ, Xu XX, Liu C, J. Eng. Thermophys-rus., 41, 55 (2020)
Liu XX, Ye J, Xu XX, Liu C, Wang KZ, Li HR, Bai WJ, CIESC J., 67, 120 (2016)
Zhao HJ, Li XW, Wu XX, J. Supercrit. Fluids, 127, 48 (2017)
Cheng J, North China Electric Power Univ. (2020).
Ankudinov VB, Kurganov VA, High Temp.-High Press., 19, 870 (1982)
Shiralkar BS, Peter G, J. Heat Transf. -Trans. ASME, 91, 27 (1969)
Wang Z, Xu R, Xiong C, Jiang P, J. Tsinghua Univ., 58, 1101 (2018)
Bae YY, Kim HY, Yoo TH, Int. J. Heat Fluid Flow, 32, 340 (2011)
Regner M, Östergren K, TräGåRdh C, Chem. Eng. Sci., 61, 6133 (2006)
Jones SC, Sotiropoulos F, Amirtharajah A, J. Environ. Eng.-ASCE, 125, 5 (2015)
Ghanem A, Lemenand T, Valle DD, Peerhossaini H, Chem. Eng. Res. Des., 92, 205 (2014)
Thakur RK, Vial C, Nigam KDP, Nauman EB, Djelveh G, Chem. Eng. Res. Des., 81, 787 (2003)
Li WG, Yu ZB, Wang Y, Li YL, Therm. Sci. Eng. Progress, 31, 101285 (2022)
Simões PC, Afonso B, Fernandes J, Mota JPB, J. Supercrit. Fluids, 43, 477 (2008)
Lisboa PF, Fernandes J, Simões PC, Mota JPB, Saatdjian E, J. Supercrit. Fluids, 55, 107 (2010)
Meng HB, Wang F, Yu YF, Song MY, Wu JH, Ind. Eng. Chem. Res., 53, 4084 (2014)
Meng HB, Song MY, Yu YF, Wang F, Wu JH, Can. J. Chem. Eng., 93, 1849 (2015)
Meng HB, Zhu GX, Yu YF, Wang ZY, Wu JH, Int. J. Heat Mass Transf., 99, 647 (2016)
Meng HB, Han MQ, Yu YF, Wang ZY, Wu JH, Int. J. Heat Mass Transf., 156, 119788 (2020)
Meng HB, Wang JB, Yu YF, Wang ZY, Wu JH, Chin. J. Process Eng., 22, 338 (2022)
Meng HB, Hao YN, Yu YF, Li ZG, Song SN, Wu JH, Korean J. Chem. Eng., 37, 1859 (2020)
Wu JH, Chinese Patent, 200,510,045,606.8 (2007).
Menter FR, AIAA J., 32, 1598 (1994)
Meng HB, Meng T, Yu YF, Wang ZY, Wu JH, Int. J. Heat Mass Transf., 194, 123006 (2022)
McEltigot DM, Jackson JD, Nucl. Eng. Des., 232, 327 (2004)
Wang L, Pan YC, Lee JD, Wang Y, Fu BR, Pan C, Int. J. Heat Mass Transf., 159, 120136 (2020)
Lin ZM, Sun DL, Wang LB, Heat Mass Transf., 45, 1351 (2009)
Song KW, Wang LB, Prog. Comput Fluid Dyn., 8, 496 (2008)
Zhu BG, Wu XM, Zhang L, Sun EH, Zhang HS, Xu JL, CIECS J., 70, 1282 (2019)
Gong B, Zhang J, Zhang CM, Wu JH, J. Beijing University Chem. Technol., 35, 84 (2008)