ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 13, 2022
Accepted September 4, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Catalytic removal of VOCs using Pt loaded on used battery derived Zn

School of Environmental Engineering, University of Seoul, Seoul 02504, Korea 1Department of Environmental Engineering, Sunchon National University, Sunchon 57975, Korea 2Department of Environment and Energy Engineering, Chonnam National University, Gwangju 61186, Korea 3Department of Environmental Education, Mokpo National University, Muan 58554, Korea
gikim@mokpo.ac.kr
Korean Journal of Chemical Engineering, January 2023, 40(1), 91-96(6), 10.1007/s11814-022-1282-1
downloadDownload PDF

Abstract

In order to investigate the feasibility of applying Zn rods (ZR) from spent primary batteries (SPBs) as a catalyst support for the complete oxidation of volatile organic compounds (VOCs), the prepared Pt catalyst based on Zn rod (Pt/SZR) was tested for the oxidation of benzene, toluene, and o-xylene. The catalyst’s basic properties of Pt/SZR catalysts were characterized by BET analysis, XRD, H2-TPR, SEM/EDX, TEM and XPS. The main ingredient of ZR was zinc oxide. As expected, for the Pt/SZR catalyst, increasing the amount of Pt added to the SZR from 0.1wt% to 1.0 wt% increased the conversions of benzene, toluene, and o-xylene. The reaction temperature for complete oxidation of benzene, toluene, and o-xylene over the 1.0 wt% Pt/SZR catalyst was less than 310 ℃ at GHSV of 50,000 h-1. TEM, XPS, and H2-TPR analysis indicated that the increase in catalytic performance due to Pt added was attributed to the active component (Pt species) and also to the readily movable lattice oxygen. This results indicate that ZR of SPBs is promising as a catalyst support for the oxidation of VOCs.

References

Dutta T, Kim KH, Deep A, Szulejko JE, Vellingiri K, Kumar S, Kwon EE, Yun ST, Renew. Sust. Energ. Rev., 18(82), 3694 (2018)
Han J, Han D, Cui M, Yang M, Pan L, J. Hazard. Mater., B133, 257 (2006)
Kierkegaard S, Comput. Law Security Rep., 23, 357 (2007)
Chen BJ, Luo M, Environ. Res., 142, 96 (2015)
Wang WQ, Chen HH, Zhao WJ, Fang KM, Sun HJ, Zhu FY, Chemosphere, 287, 132120 (2022)
De Souza CCBM, Oliveira DC, Tenorio JAS, J. Power Sources, 103, 120 (2001)
Salgado AL, Veloso AMO, Pereira DD, Gontijo GS, Salum A, Mansur MB, J. Power Sources, 115, 367 (2003)
Xin LJ, Ling MX, Cryogenics, 107, 103060 (2020)
Shen X, Du X, Yang D, Ran J, Yang Z, Chen Y, J. Environ. Chem. Eng., 9, 106729 (2021)
Zhang C, Gao X, Qin J, Guo Q, Zhou H, Jin W, J. Hazard. Mater., 402, 123817 (2021)
Truc NTT, Pham TD, Thuan DV, Son LT, Tran DT, Nguyen MV, Nguyen VN, Dang NM, Trang HT, J. Alloy. Compd., 798, 12 (2019)
Tang X, Feng F, Ye L, Zhang X, Huang Y, Liu Z, Yan K, Catal. Today, 211, 39 (2013)
Saingam P, Baig Z, Xu Y, Xi J, J. Environ. Sci., 69, 133 (2018)
Tomatis M, Moreira MT, Xu H, Deng W, He J, Parvez AM, J. Clean Prod., 233, 808 (2019)
Xie X, Cao J, Xiang Y, Xie R, Suo Z, Ao Z, Yang X, Huang H, Appl. Catal. B: Environ., 309, 121235 (2022)
Spivey JJ, Ind. Eng. Chem. Res., 26, 2165 (1987)
Vaar DR, Vatavuk MW, Wehe AH, J. Air Waste Manage. Assoc., 41(4), 497 (1991)
Gao W, Tang X, Yi H, Jiang S, Yu Q, Xie X, Zhuang R, J. Environ. Sci., 125, 112 (2023)
Cordi EM, Falconer JL, J. Catal., 162(1), 104 (1996)
Dégé P, Pinard L, Magnoux P, Guisnet M, Surf. Chem. Catal., 4(1), 41 (2001)
Kim SC, J. Hazard. Mater., B91(1-3), 285 (2002)
Wang CH, Lin SS, Chen CL, Weng HS, Chemosphere, 64(3), 503 (2006)
Hassan K, Hossain R, Farzana R, Sahajwalla V, Anal. Chim. Acta, 1165, 338563 (2021)
Gallegos MV, Peluso MA, Finocchio E, Thomas HJ, Busca G, Sambeth JE, Chem. Eng. J., 313, 1099 (2017)
Zhao Z, Shen B, Hu Z, Zhang J, He C, Yao Y, Guo SQ, Dong F, J. Hazard. Mater., 400, 123236 (2020)
Zhao Z, Du H, Shen B, Gao P, Huang C, Guo SQ, Environ. Res., 212, 113300 (2022)
Wu H, Wang L, Zhang J, Shen Z, Zhao J, Catal. Commun., 12(10), 859 (2011)
Park YK, Song H, Kim MK, Jung SC, Jung HY, Kim SC, J. Hazard. Mater., 403, 123929 (2021)
Kim SC, Nahm SW, Park YK, J. Hazard. Mater., 300, 104 (2015)
Sun J, Li T, Li X, Pan J, Hao X, Zhu T, J. Alloy. Compd., 831, 154871 (2020)
John FM, William FS, Peter ES, Kenneth DB, Handbook of X-Ray Photoelectron Spectroscopy, Phys. Electron. Inc. Minnesota (1992).
Scirè S, Minicò S, Crisafulli C, Galvagno S, Catal. Commun., 2(6-7), 229 (2001)
Trawczyński J, Bielak B, Miśta W, Appl. Catal. B: Environ., 55, 277 (2005)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로