Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 28, 2023
Revised August 4, 2023
Accepted August 6, 2023
- Acknowledgements
- The study did not receive any specific funding
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
PVDF membrane with tea powder adhered for efficient separation of emulsified oil
Abstract
Conventional oily wastewater treatment can remove slick oil and dispersed oil well, but it is difficult for it
to remove emulsified oil. Nonetheless, the development of super wetting materials provides a key role in treating the
emulsified oil, but there are some problems, such as expensive raw materials, complicated processes, as well as secondary pollution. In order to treat these problems, a brand-new oil/water separation membrane (TEA/PVDF membrane)
was developed by combining the viscosity of sodium alginate (SA) and the filter tea powder (TEA) onto the surface of
the polyvinylidene fluoride (PVDF) membrane by a vacuum pump. Furthermore, the underwater oleophobic angle
reached 135o
. Moreover, the oil-water separation experiments of oil-in-water emulsion utilizing TEA/PVDF membrane
demonstrated excellent separation efficiency (99.6%) and good flux (254 L m2
h1
bar1
). Notably, upon ten cycles, the
oil removal rate was still as high as 99.2%. Moreover, the TEA/PVDF membrane was able to separate oil-in-water
emulsions in environments with strong acids, strong bases, and high salt concentrations, with a separation efficiency of
over 95.9%. Such a novel oil/water separation membrane is economic, environmentally protective, and simple production process, which exhibits overwhelming potential in practical life for treating oily wastew
References
2. M.M. Ali, M.S. Islam, A.R.M.T. Islam, M.S. Bhuyan, A.S. Ahmed,M. Z. Rahman and M. M. Rahman, Mar. Pollut. Bull., 175, 113274 (2022).
3. B. Kamal and Ş. Kutay, Ocean Coastal Manag., 215, 105939 (2021).
4. J. Gao, J. Wang, M. Cai, Q. Xu, J. Zhang, X. Cao, J. Zhang and Y.Chen, Carbohydr. Polym., 300, 120242 (2022).
5. J. Zhang, F. Zhang, W. Fang and J. Jin, J. Membr. Sci., 672, 121472 (2023).
6. Y. Chen, H. Liu, M. Xia, M. Cai, Z. Nie and J. Gao, Sci. Total Environ., 856, 159271 (2023).
7. J. Gao, M. Cai, Z. Nie, J. Zhang and Y. Chen, Sep. Purif. Technol.,275, 119174 (2021).
8. X. Wang, M. Li, Y. Shen, Y. Yang, H. Feng and J. Li, Green Chem.,21, 3190 (2019).
9. M. Wu, P. Mu, B. Li, Q. Wang, Y. Yang and J. Li, Sep. Purif. Technol., 248, 117028 (2020).
10. G. Shi, Y. Shen, P. Mu, Q. Wang, Y. Yang, S. Ma and J. Li, Green Chem., 22, 1345 (2020).
11. E. Moon, E. Kang, W. Song, B. J. Kim, H. J. Cha and Y. S. Choi,Korean J. Chem. Eng., 40, 405 (2023).
12. J. Gao, J. Wang, Q. Xu, S. Wu and Y. Chen, Green Chem., 23, 5633 (2021).
13. T. T. Loc, N. D. Dat and H. N. Tran, Korean J. Chem. Eng., 38, 2 (2022).
14. B. Li, C. Wang, X. Tian, Y. Luo, X. Cao and Z. Luo, Colloids Surf. A: Physicochem. Eng. Asp., 654, 130085 (2022).
15. J. Li, Y. Wang and J. H. Suh, Food Sci. Hum. Wellness, 11, 524 (2022).
16. U. Baig, M. Dastageer and M. Gondal, Colloids Surf. A: Physicochem. Eng. Asp., 660, 130793 (2023).
17. L. Lu, W. Ding, J. Liu and B. Yang, Nano Energy, 78, 105251 (2020).
18. H. Zhang, Y. Shen, M. Li, G. Zhu, H. Feng and J. Li, ACS Sust.Chem. Eng., 7, 10880 (2019).
19. Y. Shi, Y. Hu, J. Shen and S. Guo, J. Membr. Sci., 629, 119294 (2021).
20. X. Zhu, L. Zhu, H. Li, C. Zhang, J. Xue, R. Wang, X. Qiao and Q. J. J. O. M. S. Xue, J. Membr. Sci., 630, 119324 (2021).
21. C. Xu, F. Yan, M. Wang, H. Yan, Z. Cui, J. Li and B. He, J. Membr.Sci., 602, 117974 (2020).
22. T. Otitoju, A. Ahmad and B. Ooi, J. Water Process Eng., 14, 41 (2016).
23. H.-C. Yang, Y. Xie, H. Chan, B. Narayanan, L. Chen, R. Z. Waldman, S. K. Sankaranarayanan, J. W. Elam and S. B. J. A. n. Darling,ACS Nano, 12, 8678 (2018).
24. D. Parbat, A. Das, K. Maji and U. J. o. M. C. A. Manna, J. Mater.Chem. A, 8, 97 (2020).
25. L. Yan, X. Yang, Y. Zhao, Y. Wu, R. M. Moutloali, B. B. Mamba, P.Sorokin and L. Shao, Sep. Purif. Technol., 285, 120383 (2022).
26. X. Lv, X. Li, L. Huang, S. Ding, Y. Lv and J. Zhang, Korean J. Chem.Eng., 39, 475 (2022).
27. B. Porkar, P. A. Atmianlu, M. Mahdavi, M. Baghdadi, H. Farimaniraad and M. A. Abdoli, Korean J. Chem. Eng., 40, 892 (2023).
28. U. Baig, A. Waheed and M. Dastageer, J. Environ. Chem. Eng., 11,109357 (2023).
29. W. Xie, K. Zhao, L. Xu, N. Gao, H. Zhao, Z. Gong, L. Yu and J. Jiang,Chin. Chem. Lett., 33, 1951 (2022).
30. Z. Panahi and M. Mohsenzadeh, Int. J. Food Microbiol., 380, 109883 (2022).
31. R. Qu, X. Li, Y. Wei and L. Feng, Appl. Surf. Sci., 532, 147350 (2020).
32. S. Zhang, S. Chen, H. Li, X. Lai and X. Zeng, J. Environ. Chem.Eng., 10, 107580 (2022).