Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 13, 2023
Revised August 4, 2023
Accepted August 10, 2023
- Acknowledgements
- This research was supported by the Korea Hydro & Nuclear Power Co. Ltd. (2023). J. Ryu acknowledges the partial support from Dongguk University Research Fund.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
A data-based scheduling methodology for constructing hydrogen refueling stations
Abstract
Hydrogen is drawing increasing attention as a carbon-neutral energy carrier. The effects of climate change
are increasing the pressure to establish a hydrogen energy infrastructure. To facilitate the transition to hydrogen energy,
a large number of hydrogen refueling stations (HRS)s will need to be constructed throughout the entire transportation
network. With a limited financial budget, constructing them simultaneously is not possible. However, it is economical
to develop a systematic decision-making framework for determining construction priorities for HRSs. In this study, we
propose p-median based mixed integer linear programming (MILP) models to establish location and construction priorities. The models aim to maximize the contribution impact that is represented by the sum of average distances
between HRS and its allocated hydrogen vehicles. The metropolitan city of South Korea, Seoul, is used as a case study
to illustrate the applicability of the proposed methodology.
References
2. S. Ebrahimi, K. Ehsani, Y. Gao and M. Longo, Modern electric, hybrid electric, and fuel cell vehicles, 3rd ed, CRC Press (2018).
3. J. Kurtz, S. Sprik and T. H. Bradley, Int. J. Hydrogen Energy, 44, 12010 (2019).
4. M. W. Melaina, Int. J. Hydrogen Energy, 28, 743 (2003).
5. M. Melaina and M. Penev, Hydrogen Station Cost Estimates:Comparing Hydrogen Station Cost Calculator Results with other Recent Estimates, Golden, CO (United States) (2013).
6. S. Kelley, S. Gulati, J. Hiatt and M. Kuby, Int. J. Hydrogen Energy,47, 2708 (2022).
7. M. A. Nicholas, S. L. Handy and D. Sperling, Transp. Res. Rec.,1880(1), 126 (2004).
8. K. Reddi, M. Mintz, A. Elgowainy and E. Sutherland, Building a hydrogen infrastructure in the United States, Elsevier Ltd. (2016).
9. S. D. Stephens-Romero, T. M. Brown, J. E. Kang, W. W. Recker and G. S. Samuelsen, Int. J. Hydrogen Energy, 35, 4652 (2010).
10. Y. Honma and O. Kurita, J. Oper. Res. Soc. Jpn., 51, 166 (2008).
11. C. Yang and J. Ogden, Int. J. Hydrogen Energy, 32, 268 (2007).
12. Y. Lee, U. Lee and K. Kim, Int. J. Hydrogen Energy, 46, 14857 (2021).
13. R. C. Samsun, L. Antoni, M. Rex and D. Stolten, Deployment Status of Fuel Cells in Road Transport: 2021 Update, Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag, Jülich (2021).
14. M. W. Melaina, Energy Policy, 35, 4919 (2007).
15. P. Nunes, F. Oliveira, S. Hamacher and A. Almansoori, Int. J. Hydrogen Energy, 40, 16408 (2015).
16. J. Kurtz, T. Bradley, E. Winkler and C. Gearhart, Int. J. Hydrogen Energy, 45, 32298 (2020).
17. T. F. Xie, J. X. Cao, G. Q. Chen and J. Wu, Procedia Soc. Behav. Sci.,96, 1127 (2013).
18. Hydrogen fuel cell partnership, Hydrogen refueling station costs,(2023). https://h2stationmaps.com/costs-and-financing (accessed March 9, 2023).
19. B. Kang, T. Kim and T. Lee, THNES., 27, 256 (2016).
20. C. Upchurch and M. Kuby, J. Transp. Geogr., 18, 750 (2010).
21. R. H. Lin, Z. Z. Ye and B. D. Wu, Int. J. Hydrogen Energy, 45, 20176 (2020).
22. B.C. Tansel, R.L. Francis and T.J. Lowe, Manage. Sci., 29, 482 (1983).
23. L. J. Hakimi, Oper. Res., 12, 450 (1964).
24. C. S. ReVelle and R. W. Swain, Geogr. Anal., 2, 30 (1970).
25. M.F. Goodchild and V.T. Noronha, Location-Allocation and Impulsive Shopping: The Case of Gasoline Retailing, in: Spatial Analysis and Location-Allocation Models, 121 (1987).
26. O. Kariv and S. L. Hakimi, SIAM J. Appl. Math., 37, 513 (1979).
27. J. A. Reggia, D. S. Nau and P. Y. Wang, Int. J. Man. Mach. Stud., 19, 437 (1983).
28. M. J. Hodgson, Geogr. Anal., 22, 270 (1990).
29. O. Berman, D. Bertsimas and R. C. Larson, Oper. Res., 43, 623 (1995).
30. M. Kuby and S. Lim, Socioecon. Plann. Sci., 39, 125 (2005).
31. M. A. Nicholas and J. Ogden, Transp. Res. Rec., 1, 121 (2006).
32. Z. Lin, J. Ogden, Y. Fan and C. W. Chen, Int. J. Hydrogen Energy, 33, 3096 (2008).
33. C. He, H. Sun, Y. Xu and S. Lv, Int. J. Hydrogen Energy, 42, 16313 (2017).
34. K. Itaoka, S. Kimura and K. Hirose, E3S Web of Conferences, 83, 1 (2019).
35. R. Lin, Z. Ye, Z. Guo and B. Wu, Int. J. Hydrogen Energy, 45, 10270 (2020).
36. R. J. Galanido, L. J. Sebastian, D. O. Asante, D. S. Kim, N. J. Chun
and J. Cho, Korean J. Chem. Eng., 39, 853 (2022).
37. M. Miralinaghi, Y. Lou, B.B. Keskin, A. Zarrinmehr and R. Shabanpour, Int. J. Hydrogen Energy, 42, 3335 (2017).
38. S. Bae, E. Lee and J. Han, Sustainability (Switzerland), 12, 4114 (2020).
39. H. Kim, M. Eom and B. I. Kim, Int. J. Hydrogen Energy, 45, 19900 (2020).
40. H. Kim, B. I. Kim and D. Thiel, Int. J. Hydrogen Energy, 46, 28760 (2021).
41. M. Fuse, H. Noguchi and H. Seya, Int. J. Hydrogen Energy, 46, 12272 (2021).
42. Y. Kuvvetli, Int. J. Hydrogen Energy, 45, 30845 (2020).
43. O.-S. Kwon, W. Yang, H.-J. Kim and D.-H. Son, J. Soc. Korea Ind. Syst., 41, 9 (2018)