ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 7, 2023
Revised May 30, 2023
Accepted June 1, 2023
Acknowledgements
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (grant numbers: 2021M3I3 A1084950 and 2021R1A2C1011618). The authors also appreciate the editing contributions of Ms. Hannah Y. Cha.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Separation efficiency of flat- and domed-roof cyclones in high-pressure polypropylene production using computational fluid dynamics

Center of Sustainable Process Engineering (CoSPE), Department of Chemical Engineering, Hankyong National University, Jungang-ro 327, Anseong-si, Gyeonggi-do 17579, Korea
limyi@hknu.ac.kr
Korean Journal of Chemical Engineering, October 2023, 40(10), 2419-2433(15), 10.1007/s11814-023-1507-y
downloadDownload PDF

Abstract

Separation efficiency of flat- and domed-roof cyclones was investigated in a polypropylene (PP) production process at 20 bar and 80 o C, using computational fluid dynamics (CFD) coupled with the Reynolds stress model for gas turbulence and a discrete random walk model for particles. The geometry of the domed-roof cyclone was based on a high-efficiency Stairmand cyclone and the ASME standard for high-pressure vessels. The meshing strategy and CFD model validation of the cyclones were performed systematically. At an inlet velocity of 20 m/s and atmospheric pressure, the fractional separation efficiency of the domed-roof cyclone was 1.5% higher than that of the flat-roof cyclone in an air-CaCO3 system for particle sizes ranging from 0.1 to 100 m. Under the high-pressure operating conditions of the domed-roof cyclone, the diameter (De) of the vortex finder was selected as 40% of the cyclone barrel diameter (D), maintaining its high separation efficiency and moderate pressure drop. The optimized domed-roof cyclone achieved an 8.4% higher mean fractional separation efficiency and a 6.4% lower pressure drop compared to a standard flat-roof cyclone for PP particles from 1 to 40 m. The CFD result provides a useful guide for designing a high-efficiency domed-roof cyclone at high pressures.

References

1. A. C. Hoffmann and L. E. Stein, Gas cyclones and swirl tubes: Principles, design and operation, Springer, Berlin (2008).
2. Z. W. Zhang, Q. Li, Y. H. Zhang and H. L. Wang, Sep. Purif. Technol., 286, 120394 (2022).
3. J. Song, Y. Wei, G. Sun and J. Chen, Chem. Eng. J., 309, 249 (2017).
4. P. Khalili Ata Abadi, J. Vaziri Naeen Nejad and S. Kheradmand,Chem. Eng. Res. Des., 179, 331 (2022).
5. S. Jiang, H. Yuan, F. Zhou and S. Fu, Chem. Eng. Process., 164, 108398 (2021).
6. N. Fathizadeh, A. Mohebbi, S. Soltaninejad and M. Iranmanesh, J. Nat. Gas Sci. Eng., 26, 313 (2015).
7. A. Dumain and C. Raufast, US Patent, 4,882,400 (1989).
8. J. a. B. P. Soares and T. F. L. McKenna, Polyolefin reaction engineering, Wiley-VCH Verlag & Co. KGaA, Weinheim, Germany (2012).
9. A. Rita and O. D. Figueiredo, Master’s Thesis, University of Lisbon,Lisbon (2015).
10. R. Fan, PhD Thesis, Iowa State University, Ames (2006).
11. S. I. Ngo and Y.-I. Lim, ChemEngineering, 4, 23 (2020).
12. K. Elsayed and C. Lacor, Comput. Fluids, 51, 48 (2011).
13. S. I. Ngo, Y.-I. Lim, B.-H. Song, U.-D. Lee, J.-W. Lee and J.-H. Song,Powder Technol., 275, 188 (2015).
14. S. I. Ngo, Y. I. Lim, D. Lee, M. W. Seo and S. Kim, Energy Convers.Manage., 233, 113863 (2021).
15. Y. Park, C. Y. Yun, J. Yi and H. Kim, Korean J. Chem. Eng., 22, 697 (2005).
16. E. Hosseini, H. Fatahian and E. Fatahian, Korean J. Chem. Eng., 39, 3482 (2022).
17. E. Yohana, M. Tauviqirrahman, D. A. Laksono, H. Charles, K.-H.Choi and M. E. Yulianto, Powder Technol., 399, 117235 (2022).
18. X. Wu and X. Chen, Environ. Prog. Sustain. Energy, 38, 1 (2019).
19. K. Elsayed and C. Lacor, Appl. Math. Model., 35, 1952 (2011).
20. K. Jang, G. G. Lee and K. Y. Huh, Comput. Fluids, 172, 274 (2018)
21. W. D. Griffiths and F. Boysan, J. Aerosol Sci., 27, 281 (1996).
22. S. Venkatesh, M. Sakthivel, M. Avinasilingam, S. Gopalsamy, E. Arulkumar and H. P. Devarajan, Korean J. Chem. Eng., 36, 929 (2019).
23. Y. Sun, J. Yu, W. Wang, S. Yang, X. Hu and J. Feng, Korean J. Chem.Eng., 37, 743 (2020).
24. Y. Xu, B. Tang, X. Song, Z. Sun and J. Yu, Korean J. Chem. Eng., 35,2355 (2018).
25. R. Shastri and L. S. Brar, Sep. Purif. Technol., 249, 117149 (2020).
26. S. K. Shukla, P. Shukla and P. Ghosh, Appl. Math. Model., 37, 5774 (2013).
27. S. Pandey and L. S. Brar, Powder Technol., 407, 117629 (2022).
28. F. Kaya and I. Karagoz, Chem. Eng. J., 151, 39 (2009).
29. A. J. Hoekstra, PhD Thesis, Delft University of Technology, Delft (2000).
30. T. E. Nowlin and K. P. Wagner, US Patent, 4,481,301 (1984).
31. M. Wasilewski, Sep. Purif. Technol., 179, 236 (2017).
32. F. Parvaz, S. H. Hosseini, G. Ahmadi and K. Elsayed, Sep. Purif.Technol., 187, 1 (2017).
33. H. Safikhani, Adv. Powder Technol., 27, 2277 (2016).
34. A. Raoufi, M. Shams, M. Farzaneh and R. Ebrahimi, Chem. Eng. Process., 47, 128 (2008).
35. H. Safikhani, J. Zamani and M. Musa, Adv. Powder Technol., 29, 611 (2018).
36. K. Elsayed and C. Lacor, Comput. Fluids, 71, 224 (2013).
37. A. D. Gosman and E. loannides, J. Energy, 7, 482 (1983).
38. M. M. Gibson and B. E. Launder, J. Fluid Mech., 86, 491 (1978).
39. A. Fluent, ANSYS Fluent theory guide, ANSYS Inc. (2022).
40. ASME, ASME boilers and pressure vessel code (2019).
41. F. Alamolhoda, A. Shamiri, M.A. Hussain, R. Zarghami, R. SotudehGharebagh and N. Mostoufi, Int. J. Chem. React. Eng., 17, 20180036 (2019).
42. E. Bumrungthaichaichan, Powder Technol., 396, 327 (2022).
43. Y. A. Cengel and J. M. Cimbala, Fluid mechanics: Fundamentals and applications, McGraw-Hill, New York (2006).
44. S. K. Shukla, P. Shukla and P. Ghosh, Adv. Powder Technol., 22, 209 (2011).
45. A.C. Hoffmann, M. de Groot, W. Peng, H.W.A. Dries and J. Kater, AIChE J., 47, 2452 (2001).
46. P. J. Roache, AIAA J., 36, 696 (1998).
47. Z. Zhang, S. Dong, R. Jin, K. Dong, L. a. Hou and B. Wang, Powder Technol., 404, 117370 (2022).
48. B. Zhao, Chem. Eng. Process., 44, 447 (2005).
49. R. Guizani, H. Mhiri and P. Bournot, Powder Technol., 314, 599 (2017).
50. C. Galletti, A. Rum, V. Turchi and C. Nicolella, Adv. Powder Technol., 31, 1264 (2020).
51. W. Kraipech, W. Chen, F. J. Parma and T. Dyakowski, Int. J. Min. Proc., 66, 49 (2002).
52. L. Minkov, J. Dueck and T. Neesse, Miner. Eng., 62, 19 (2014).
53. B. Wang and A. B. Yu, AIChE J., 56, 1703 (2010)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로