Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 11, 2022
Revised January 6, 2023
Accepted January 31, 2023
- Acknowledgements
- This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPQ, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES and Fundação de Amparo à Pesquisa do Estado de Minas Gerais - FAPEMIG.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Thioanisole oxidation promoted by new niobium-based catalyst: The effect of surface hydroxyl groups on catalytic performance
Abstract
In this work, the application of a new, synthesized niobium-based catalyst, called S4 (niobium oxyhydroxide), in the liquid-phase oxidation of methyl-phenyl sulfide (thioanisole) using hydrogen peroxide as oxidant was proposed. The synthetic method employed provided a material with low crystallinity and high specific surface area and
acidity. A commercial material, called HY-340 (hydrated niobium oxide), was also employed as heterogeneous catalyst
for comparative purposes. The results showed that the synthesized S4 material is an outstanding catalyst, being able to
completely convert the substrate (thioanisole) that achieves almost 90% of selectivity for methyl phenyl sulfone formation, under mild reaction conditions. According to the theoretical and experimental combined results, the superior performance of S4 catalyst is related to the better interaction of H2O2 and thioanisole molecules with S4 surface, compared
to HY-340, pointing to the greater ability of this catalyst to form reactive oxygen species in contact with hydrogen peroxide, due to its higher content of free hydroxyl groups present on its s
References
2. A. R. Alves and A. dos Reis Coutinho, Mater. Res., 18(1), 106 (2015).
3. K. Tanabe and S. Okazaki, Appl. Catal. A-Gen., 133(2), 191 (1995).
4. M. Ziolek and I. Sobczak, Catal. Today, 285, 211 (2017).
5. I. Nowak and M. Ziolek, Chem. Rev., 99(12), 3603 (1999).
6. K. Tanabe, Catal. Today, 78(1), 65 (2003).
7. M. Ziolek, Catal. Today, 78(1), 47 (2003).
8. D. C. Batalha and M. J. da Silva, Energies, 14(17), 5506 (2021).
9. K. Skrodczky, M. M. Antunes, X. Han, S. Santangelo, G. Scholz, A.
A. Valente, N. Pinna and P. A. Russo, Commun. Chem., 2(129), 1 (2019).
10. M. Ziolek, I. Sobczak, P. Decyk, K. Sobańska, P. Pietrzyk and Z. Sojka, Appl. Catal. B-Environ., 164, 288 (2015).
11. M. Ziolek, I. Sobczak, P. Decyk and L. Wolski, Catal. Commun.,37, 85 (2013).
12. M. B. Pinto, A. L. Soares, M. C. Quintão, H. A. Duarte and H. A.de Abreu, J. Phys. Chem. C, 122(12), 6618 (2018).
13. C. M. Silva, P. L. Silva and J. R. Pliego, J. Phys. Chem. C, 124(17),9369 (2020).
14. A. C. Silva, R. M. Cepera, M. C. Pereira, D. Q. Lima, J. D. Fabris and L. C. A. Oliveira, Appl. Catal. B-Environ., 107(3-4), 237 (2011).
15. T. Punniyamurthy, S. Velusamy and J. Iqbal, Chem. Rev., 105(6),2329 (2005).
16. J. Přech, R. E. Morris and J. Čejka, Catal. Sci. Technol., 6(8), 2775 (2016).
17. S. Doherty, J. G. Knight, M. A. Carroll, J. R. Ellison, S. J. Hobson, S.Stevens, C. Hardacre and P. Goodrich, Green Chem., 17(3), 1559 (2015).
18. P. Cruz, M. Fajardo, I. del Hierro and Y. Pérez, Catal. Sci. Technol.,9, 620 (2019).
19. B. K. Kundu, M. Das, R. Ganguly, P. A. Bhobe and S. Mukhopadhyay, J. Catal., 389, 305 (2020).a) Ammar T. Khadim, Talib M. Albayati and Noori M. C. Saady,Microp. Mesop. Mat., 341, 112020 (2022).b) Ammar T. Khadim, Talib M. Albayati and Noori M. Cata Saady,Environ. Nanotechnol., Monitoring Manage., 17, 100635 (2022).
20. R. Fazaeli, H. Aliyan, M. A. Ahmadi and S. Hashemian, Catal. Commun., 29, 48 (2012).
21. A. Bayat, M. Shakourian-Fard and M. M. Hashemi, Catal. Commun., 52, 16 (2014).
22. F. Rajabi, S. Naserian, A. Primo and R. Luque, Adv. Synth. Catal.,353, 2060 (2011).
23. Q. Wang, W. Ma, O. Tong, G. Du, J. Wang, M. Zhang, H. Jiang, H.Yang, Y. Liu and M. Cheng, Sci. Rep., 7209, 7 (2017).
24. L. Fang, Q. Xu, Y. Qi, X. Wu, Y. Fu, Q. Xiao, F. Zhang and W. Zhu,Mol. Catal., 486, 110863 (2020).
25. K. S. Ravikumar, J. P. Bégué and D. Bonnet-Delpon, Tetrahedron.Lett., 39, 3141 (1998).
26. V. Ayala, A. Corma, M. Iglesias and F. Sánchez, J. Mol. Catal. A Chem., 221, 201 (2004).
27. B. Karimi, M. Ghoreishi-Nezhad and J. H. Clark, Org. Lett., 7, 625 (2005).
28. K. Sato, M. Hyodo, M. Aoki, X. Q. Zheng and R. Noyori, Tetrahedron, 57, 2469 (2001).
29. J. Zhang, T. Jiang, Y. Mai, X. Wang, J. Chen and B. Liao, Catal. Commun., 127, 10 (2019).
30. W. Zhao, C. Yang, Z. Cheng and Z. Zhang, Green Chem., 18, 995 (2016).
31. C. L. Marchena, C. Saux, R. Dinamarca, G. Pecchi and L. Pierella,RSC Adv., 6, 102015 (2016).
32. A. Feliczak-Guzik, A. Wawrzyńczak and I. Nowak, Micropor. Mesopor. Mat., 202, 80 (2015).
33. J. B. Gabriel, V. Oliveira, T. E. Souza, I. Padula, L. C. A. Oliveira,L. V. A. Gurgel, B. E Baeta and A. C. Silva, ACS Omega, 5, 21392 (2020).
34. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,J. R. Cheeseman and J. A. Pople, “Handbook of Gaussian” Gaussian, Inc (2004).
35. T. E. Souza, I. D. Padula, M. M. Teodoro, P. Chagas, J. M. Resende,P. P. Souza and L. C. Oliveira, Catal. Today, 254, 83 (2015).
36. T. E. Souza, M. F. Portilho, P. M. T. G. Souza, P. P. Souza and L. C. A.Oliveira, ChemCatChem, 6, 2961 (2014).
37. R. Guidelli, R. G. Compton, J. M. Feliu, E. Gileadi, J. Lipkowski, W.Schmickler and S. Trasatti, Pure Appl. Chem., 87, 1051 (2015).
38. E. N. Alvar, M. Rezaei and H. N. Alvar, Powder Technol., 198, 275 (2010).
39. Z. Zhao, L. Zhang, H. Dai, Y. Du, X. Meng, R. Zhang, Y. Liu and J.Deng, Micropor. Mesopor. Mater., 138, 191 (2011).
40. H. Li, G. Wang, F. Zhang, Y. Cai, Y. Wang and I. Djerdj, RSC Adv.,2, 12413 (2012).
41. S. M. A. Hakim Siddiki, N. Rashed, A. Ali, T. Toyao, P. Hirunsit,M. Ehara and K. Shimizu, ChemCatChem, 11, 383 (2019).
42. D. C. Batalha, N. H. Marins, R. M. Silva, N. L. V. Carreno, H. V.Fajardo and M. J. da Silva, Mol. Catal., 489, 110941 (2020).
43. Z. T. Alismaeel, T. M. Al-Jadir, T. M. Albayati, A. S. Abbas and A. M.Doyle, Adv. Powder Technol., 33 (2022).
44. T. F. Rosado, M. P. Teixeira, L. C. Moraes, L. A. da Silva, A. V. Pontes-Silva, J. G. Taylor, I. C. de Freitas, D. C. de Oliveira, J. Gardener,
G. Solórzano, T. V. Alves, M. F. Venancio, M. I. P. da Silva, E. Brocchi, H. V. Fajardo and A. G. M. da Silva, Appl. Catal., A, 613, 118010 (2021).
45. A. M. Mesquita, I. R. Guimaraes, G. M. M. de Castro, M. A. Goncalves, T. C. Ramalho and M. C. Guerreiro, Appl. Catal., B, 192, 286 (2016).
46. F. C. Riemke, C. L. Ucker, N. L. V. Carreno, S. S. Cava, M. P. Teixeira,H. V. Fajardo, J. G. Taylor, M. J. Silva, D. C. Batalha and C. W. Raubach, Mat. Chem. Phys., 278, 125591 (2022).
47. P. Cruz, M. Fajardo, I. del Hierro and Y. Perez, Catal. Sci. Technol.,9, 620 (2018).
48. N.E. Thornburg and J.M. Notestein, ChemCatChem, 9, 3714 (2017).
49. O. V. Zalomaeva, N. V. Maksimchuk, G. M. Maksimov and O. A.Kholdeeva, Eur. J. Inorg. Chem., 2019, 410 (2019)