ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 4, 2023
Revised March 15, 2023
Accepted April 7, 2023
Acknowledgements
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2021R1F1A1046272)
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Activated carbons derived from polyethylene terephthalate for coin-cell supercapacitor electrodes

1Department of Chemical Engineering, Myongji University, Yongin 17058, Korea 2Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Wanju-gun, Jeollabuk-do 55324, Korea 3Lotte Chemical Research Institute, Daejeon 34110, Korea
joongwon.lee@lotte.net, jcjung@mju.ac.kr
Korean Journal of Chemical Engineering, October 2023, 40(10), 2442-2454(13), 10.1007/s11814-023-1466-3
downloadDownload PDF

Abstract

We successfully prepared activated carbon derived from polyethylene terephthalate (PET) via carbonization and subsequent activation under various conditions and applied it as active material for supercapacitors. In the activation, we used CO2 for physical activation or KOH for chemical activation and varied the activation temperature from 600 o C to 1,000 o C. We found that CO2 activation is unsuitable because of insufficient pore formation or low activation yield. Interestingly, PET-derived activated carbon obtained using KOH (PETK) at 700 o C-900 o C exhibited higher specific surface areas than YP50f, which is a commercial activated carbon. Furthermore, some PETKs even displayed a dramatic increase in crystallinity. In particular, the PET-derived activated carbon prepared at 900 o C with KOH (PETK900) had the highest retention rate at a high charge-discharge rate and better durability after 2500 cycles than YP50f. Furthermore, employing the same process that we used with the PET chips, we successfully converted waste PET bottles into activated carbon materials. Waste PET-derived activated carbons exhibited good electrochemical performance as active material for supercapacitors. We thus found chemical activation with KOH to be an appropriate method for manufacturing PET-derived activated carbon and PETKs derived both from PET chips and waste PET have considerable potential for commercial use as active materials for supercapacitors.

References

1. E. Frackowiak, Q. Abbas and F. Béguin, J. Energy Chem., 22, 226 (2013).
2. A. González, E. Goikolea, J. A. Barrena and R. Mysyk, Renew. Sust.Energy Rev., 58, 1189 (2016).
3. L. Zhang, X. Hu, Z. Wang, F. Sun and D. G. Dorrell, Renew. Sust.Energy Rev., 81, 1868 (2018).
4. G. Wang, L. Zhang and J. Zhang, Chem. Soc. Rev., 41, 797 (2012).
5. T. Sato, S. Marukane, T. Morinaga, T. Kamijo, H. Arafune and Y.Tsujii, J. Power Sources, 295, 108 (2015).
6. G. G. Prasad, N. Shetty, S. Thakur, Rakshitha and K. B. Bommegowda, Mater. Sci. Eng., 561, 012105 (2019).
7. M. Ciszewski, A. Koszorek, T. Radko, P. Szatkowski and D. Janas,J. Electron. Mater., 48, 717 (2019).
8. Z. Yu, L. Tetard, L. Zhai and J. Thomas, Energy Environ. Sci., 8,702 (2015).
9. E. Frackowiak and F. Béguin, Carbon, 39, 937 (2001).
10. P. Simon and Y. Gogotsi, Nat. Mater., 7, 845 (2008).
11. T. V. Pham, J.-G. Kim, J. Y. Jung, J. H. Kim, H. Cho, T. H. Seo, H.Lee, N. D. Kim and M. J. Kim, Adv. Funct. Mater., 29, 1905511 (2019).
12. D. Gastol, J. Walkowiak, K. Fic and E. Frackowiak, J. Power Sources,326, 587 (2016).
13. N. Jäckel, D. Weingarth, M. Zeiger, M. Aslan, I. Grobelsek and V.Presser, J. Power Sources, 272, 1122 (2014).
14. Z. Zhu, S. Tang, J. Yuan, X. Qin, Y. Deng, R. Qu and G. M. Haarberg, Int. J. Eletrochem. Sci., 11, 8270 (2016).
15. M. Aslan, D. Weingarth, N. Jäckel, J. S. Atchison, I. Grobelsek and V. Presser, J. Power Sources, 266, 374 (2016).
16. S. Ajit, S. Palaniappan and S. Gopukumar, Synth. Met., 180, 43 (2013).
17. C. Bauer, A. Bilican, S. Braxmeier, G. Reichenauer and A. Krueger,Carbon, 197, 555 (2022).
18. G. Yang, T. Takei, Y. Zhu, E. Iranmanesh, B. Liu, Z. Li, J. Wang, P.Hiralal, G. A. J. Amaratunga, O. Fontaine and H. Zhou, Electrochim. Acta, 397, 139242 (2021).
19. N. Jäckel, D. Weingarth, A. Schreiber, B. Krüner, M. Zeiger, A.Tolosa, M. Aslan and V. Presser, Electrochim. Acta, 191, 284 (2016).
20. Y. Hamano, S. Tsujimura, O. Shirai and K. Kano, Mater. Lett., 128,191 (2014).
21. S. J. Taylor, M. D. Haw, J. Sefcilk and A. J. Fletcher, Langmuir, 30,10231 (2014).
22. F. N. Ajjan, M. Vagin, T. Rębiś, L. E. Aguirre, L. Ouyang and O.Inganäs, Adv. Sustainable Syst., 1, 1700054 (2017).
23. Z. Liu, S. Liu, R. Dong, S. Yang, H. Lu, A. Narita, X. Feng and K.Müllen, Small, 13, 1603388 (2017).
24. P. Ratajczak, M. E. Suss, F. Kaasik and F. Béguin, Energy Storage Mater., 16, 126 (2019).
25. J. Choi, I. Yang, S.-S. Kim, S. Y. Cho and S. Lee, Macromol. Rapid Commun., 43, 2100467 (2021).
26. I. Yang, S.-G. Kim, S. H. Kwon, M.-S. Kim and J. C. Jung, Electrochim. Acta, 223, 21 (2017).
27. J.-A. Kim, I.-S. Park, J.-H. Seo and J.-J. Lee, Trans. Electr. Electron.Mater., 15, 81 (2014).
28. F. Xu, Y. Qiu, G, Jiang, B. Ding, J. Li, Q. Liu, J. Wu, X. Xu, H. Wang and Y. Liang, Macromol. Rapid Commun., 40, 1800770 (2019).
29. Y. Liu, P. Liu, Lin, Li, S. Wang, Z. Pan, C. Song and T. Wang, J. Electroanal. Chem., 903, 115828 (2021).
30. M. Jung, I. Yang, J. Yoo, M.-S. Kim and J. C. Jung, J. Electrochem.Soc., 168, 080532 (2021).
31. I. Yang, J. Yoo, J. Lee, M.-S. Kim and J. C. Jung, J. Electrochem. Soc.,166, A3950 (2019).
32. D. R. Lobato-Peralta, R. Amaro, D. M. Arias, A. K. Cuentas-Gallegos, O. A. Jaramillo-Quintero, P. J. Sebastian and P. U. Okoye, J.Electroanal. Chem., 901, 115777 (2021).
33. X. Yuan, M.-K. Cho, J. G. Lee, S. W. Choi and K. B. Lee, Environ.Pollut., 265, 114868 (2020).
34. C. Yuwen, B. Liu, Q. Rong, L. Zhang and S. Guo, Sci. Total Environ., 817, 152995 (2022).
35. S. Sharifian and N. Asasian-Kolur, J. Anal. Appl. Pyrolysis, 163,105496 (2022).
36. I. Yang, J. H. Mok, M. Jung, J. Yoo, M.-S. Kim, D. Choi and J. C.Jung, Macromol. Rapid. Commun., 43, 2200006 (2022).
37. S. Chen, Z. Liu, S. Jiang and H. Hou, Sci. Total Environ., 710, 136250 (2020).
38. M. Karakoti, S. Pandey, R. Jangra, P. S. Dhapola, P. K. Singh, S.Mahendia, A. Abbas and N.G. Sahoo, Mater. Manuf., 36, 171 (2021).
39. E. Azwar, W. A. W. Mahari, J. H. Chuah, D.-V. N. Vo, N. L. Ma,W. H. Lam and S. S. Lam, Int. J. Hydrog. Energy, 43, 20811 (2018).
40. K.R. Vanapalli, H.B. Sharma, V.P. Ranjan, B. Samal, J. Bhattacharya,B. K. Dubey and S. Goel, Sci. Total Environ., 750, 141514 (2021).
41. K. S. Khoo, L. Y. Ho, H. R. Lim, H. Y. Leong and K. W. Chew, J.Hazard. Mater., 417, 126108 (2021).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로