Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 9, 2023
Revised March 28, 2023
Accepted April 17, 2023
- Acknowledgements
- This work was supported by the Technology Innovation Program (20011712) funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea). This work was also supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2020M1A2A2080796)
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Investigating the effect of solvent composition on ink structure and crack formation in polymer electrolyte membrane fuel cell catalyst layers
Abstract
To improve the performance of polymer electrolyte membrane fuel cells (PEMFCs), controlling the microstructure of the membrane electrode assembly (MEA) catalyst layer is crucial. Ink design, which includes a catalyst, an
ionomer, and a solvent, serves as the starting point for controlling the microstructure of the catalyst layer. However,
there is a significant lack of understanding of the ink structure required for this purpose. In this study, we investigated
the effect of the solvent, a key component that determines the ink structure. The ink comprises 20 wt% Pt/C, shortside-chain (SSC) Aquivion ionomer, and a solvent mixture of 1-propanol (NPA) and water. Three types of inks with
different compositions of NPA and water are manufactured, and their stability and rheological properties were measured to infer and compare the ink structures. Furthermore, the crack characteristics of the catalyst layer were compared by directly coating the ink onto the electrolyte membrane using the doctor-blade method. In the ink with a high
water content, we observed a gel-like elastic behavior dominated by network structures formed by ionomers adsorbed
between catalyst particles. In contrast, the ink with a high NPA content exhibited a liquid-like viscous behavior dominated by well-dispersed catalyst particles and ionomers. These properties of the inks directly influence the crack formation characteristics after coating. Specifically, the strong liquid properties of the NPA-rich ink were found to suppress
crack formation in the catalyst layer. These findings provide important insights into how the solvent composition
affects ink structure and how it, in turn, influences crack formation in the catalyst layer, which can help optimize the
ink design to improve the performance of PEMFCs
Keywords
References
2. M. Shibayama, T. Matsunaga, T. Kusano, K. Amemiya, N. Kobayashi and T. Yoshida, J. Appl. Polym. Sci., 131, 39842 (2014).
3. R. Balu, N. R. Chondhury, J. P. Mata, L. de Campo, C. Rehm, A. J.Hill and N. K. Dutta, ACS Appl. Mater. Interfaces, 11, 9934 (2019).
4. F. Xu, H. Y. Zhang, J. Ilavsky, L. Stanciu, D. Ho, M. J. Justice, H. I.Petrache and J. Xie, Langmuir, 26, 19199 (2010).
5. F. Yang, L. Xin, A. Uzunoglu, Y. Qui, L. Staniu, J. Ilavsky, W. Li and J. Xie, ACS Appl. Mater. Interfaces, 9, 6530 (2017).
6. S. Khandavalli, R. Iyer, J. H. Park, D. J. Myers, K. C. Neyerlin, M.Ulsh and S. A. Mauger, Langmuir, 36, 12247 (2020).
7. M. Wang, J. H. Park, S. Kabir, K. C. Neyerlin, N. N. Kariuki, H. Lv,V. R. Stamenkovic, D. J. Myers, M. Ulh and S. A. Mauger, ACS Appl. Energy Mater., 2, 6417 (2019).
8. S. Takahashi, T. Mashio, N. Horibe, K. Akizuki and A. Ohma,ChemElectroChem, 2, 1560 (2015).
9. N. Kumano, K. Kudo, A. Suda, Y. Akimoto, M. Ishii and H.Nakamura, J. Power Sources, 419, 219 (2019).
10. S. Shukla, S. Bhattacharjee, A. Z. Weber and M. Secanell, J. Electrochem. Soc., 164, F600 (2017).
11. M. B. Dixit, B. A. Harkey, F. Shen and K. B. Hatzell, J. Electrochem.Soc., 165, F264 (2018).
12. S. Takahashi, J. Shimanuki, T. Mashio, A. Ohma, H. Tohma, A.Ishihara, Y. Ito, Y. Nishino and A. Miyazawa, Electrochim. Acta,224, 178 (2017).
13. S. A. Berlinger, B. D. McCloskey and A. Z. Weber, ACS Energy Lett., 6, 2275 (2021).
14. T. Mabuchi, S. F. Huang and T. Tokumasu, Macromolecules, 53, 3273 (2020).
15. M. Ghelichi, K. Malek and M. H. Eikerling, Macromolecules, 49, 1479 (2016).
16. A. Tarokh, K. Karan and S. Ponnurangam, Macromolecules, 53, 288 (2020).
17. J. H. Lee, G. Doo, S. H. Kwon, S. Choi and H. T. Kim, Sci. Rep., 8, 10739 (2018).
18. S. Khandavalli, J. H. Park, N. N. Kariuki, D. J. Myers, J. J. Stickel, K.Hurst, K. C. Neyerlin, M. Ulsh and S. A. Mauger, ACS Appl. Mater.Interfaces, 10, 43610 (2018).
19. E. Hoffmann, S. Zhang, M. Thoma, C. Damm and W. Peukert, Particuology, 44, 7 (2019).
20. S. Bapat and D. Segets, ACS Appl. Nano Mater., 3, 7384 (2020).
21. A. Z. Tanning, S. Lee, S. Woo, S. H. Park, B. Bae and S. D. Yim, J.Electrochem. Soc., 168, 104506 (2021).
22. B. V. Derjaguin and L. Landau, Prog. Surf. Sci., 43, 30 (1993).
23. E. J. W. Verwey and J. T. G. Overbeek, Theory of the stability of lyophobic colloids, The Interaction of Sol Particles Having an Electric
Double Layer, Elsevier, New York, NY, 20 (1948).
24. V. Runkana, P. Somasundaran and P. C. Kapur, Chem. Eng. Sci., 61, 182 (2006).
25. M. So, T. Ohnishi, K. Park, M. Ono, Y. Tsuge and G. Inoue, Int. J.Hydrogen Energy, 44, 28984 (2019).
26. N. Kumano, K. Kudo, Y. Akimoto, M. Ishii and H. Nakamura, Carbon, 169, 429 (2020).
27. A. K. Dolan and S. F. Edwards, Proc. R. Soc. London, A337, 509 (1974).
28. A. N. Semenov and A. A. Shvets, Soft Matter, 11, 8863 (2015).
29. J. H. Lee, U. Paik, J. Y. Choi, K. K. Kim, S. M. Yoon, J. Lee, B. K.Kim, J. M. Kim, M. H. Park, C. W. Yang, K. H. An and Y. H. Lee, J.Phys. Chem. C, 111, 2477 (2007).
30. Y. Qin, S. Ma, Y. Chang, Y. Liu, Y. Yin, J. Zhang, Z. Liu, K. Jiao and Q. Du, Int. J. Hydrogen Energy, 46, 8722 (2021).
31. Y. Matsui, T. Suzuki, P. Deevanhxay, S. Tsushima and S. Hirai, ASME 2013 11th Int Conf Fuel Cell Sci Eng Technol. ASME, 1-5 (2013)