ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 7, 2023
Revised July 12, 2023
Accepted August 10, 2023
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Investigation on hydrogen storage capacity of spherical activated carbons from ion exchange resins

1CO2 & Energy Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea 2Department of Advanced Material and Chemical Engineering, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea 3Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
jshong@krict.re.kr, jksuh@krict.re.kr
Korean Journal of Chemical Engineering, October 2023, 40(10), 2463-2471(9), 10.1007/s11814-023-1551-7
downloadDownload PDF

Abstract

The role of spherical activated carbon from ion exchange resin as an adsorption material for hydrogen storage was researched. Spherical activated carbon samples were prepared from two types of physical activation methods using steam and CO2. The porosity induced by each method and the resulting hydrogen adsorption performance were compared and evaluated. When the samples had similar BET surface areas, steam activation induced microporous spherical activated carbon to increase hydrogen storage performance at low pressure (~1 bar) under low temperature conditions (under 77 K). CO2 activation enabled good formation of the 1-2 nm sized pore ratio in the micropores, thus enhancing hydrogen storage performance at high pressure (~200 bar) under ambient temperature (under 298 K). In conclusion, this indicates that there exists a range of spherical activated carbon pore size favorable for hydrogen adsorption, dependent on the pressure range applied.

References

1. A. Li, R.-F. Lu, Y. Wang, K.-L. Han and W.-Q. Deng, Angew. Chem.,122(19), 3402 (2010).
2. Y. Li and R. T. Yang, J. Phys. Chem. C, 111(29), 11086 (2007).
3. L. Wang, F. H. Yang, R. T. Yang and M. A. Miller, Ind. Eng. Chem.Res., 48(6), 2920 (2009).
4. M. Zieliński, R. Wojcieszak, S. Monteverdi, M. Mercy and M. M.Bettahar, Catal. Commun., 6(12), 777 (2005).
5. K. Xia, J. Hu and J. Jiang, Appl. Surface Sci., 315, 261 (2014).
6. M. Jordá-Beneyto, F. Suárez-García, D. Lozano-Castelló, D. CazorlaAmorós and A. Linares-Solano, Carbon, 45(2), 293 (2007).
7. J. Wang, I. Senkovska, S. Kaskel and Q. Liu, Carbon, 75, 372 (2014).
8. K. Xia, Q. Gao, C. Wu, S. Song and M. Ruan, Carbon, 45(10),1989 (2007).
9. N. Bader and O. Abdelmottaleb, Environ. Prog. Sust. Energy, 36(1),315 (2017).
10. J. Dong, X. Wang, H. Xu, Q. Zhao and J. Li, Int. J. Hydrogen Energy,32(18), 4998 (2007).
11. A. Minoda, S. Oshima, H. Iki and E. Akiba, J. Alloys Compd., 580,S301 (2013).
12. Z. Geng, D. Wang, C. Zhang, X. Zhou, H. Xin, X. Liu and M. Cai,Int. J. Hydrogen Energy, 39(25), 13643 (2014).
13. Y. Li, R. T. Yang, C. J. Liu and Z. Wnag, Ind. Eng. Chem. Res.,46(24), 8277 (2007).
14. N. Bader and A. Ouederni, J. Energy Storage, 13, 268 (2017).
15. S. S. Samantaray, S. R. Mangisetti and S. Ramaprabhu, J. Alloys Compd., 789, 800 (2019).
16. P. Chen, X. Wu and K. L. Tan, Science, 285(5424), 91 (1999).
17. I. Rossetti, G. Ramis, A. Gallo and A. D. Michele, Int. J. Hydrogen Energy, 40(24), 7609 (2015).
18. M. Jordá-Beneyto, D. Lozano-Castelló, F. Suárez-García, D. CazorlaAmorós and A. Linares-Solano, Micropor. Mesopor. Mater., 112(1-3), 235 (2008).
19. R. Kato and H. Nishide, Polym. J., 50, 77 (2018).
20. M. Zieliński, R. Wojcieszak, S. Monteverdi, M. Mercy and M. M.Bettahar, Int. J. Hydrogen Energy, 32(8), 1024 (2007).
21. J. Lyu, V. Kudiiarov and A. Lider, Nanomaterials, 10(2), 255 (2020).
22. S. Łoś, M. Letellier, P. Azaïs and L. Duclaux, J. Phys. Chem. Solids,67(5-6), 1182 (2006).
23. H. Zhou, L. Zhang, S. Gao, H. Liu, L. Xu, X. Wang and M. Yan,Int. J. Hydrogen Energy, 42(36), 23010 (2017).
24. N. P. Stadie, J. J. Purewal, C. C. Ahn and B. Fultz, Langmuir, 26(19),15481 (2010).
25. K. Chen, Y. Pan and C. Liu, Sci. China Chem., 53(7), 1598 (2010).
26. Q. Wang, X. Liang, W. Qiao, C. Liu, X. Liu, L. Zhan and L. Ling,Fuel Process. Technol., 90(3), 381 (2009).
27. Y. W. You, E. H. Moon, I. Heo, H. Park, J. S. Hong and J. K Suh, J.Ind. Eng. Chem., 45, 164 (2017).
28. B. Panella, M. Hirscher, H. Pütter and U. Müller, Adv. Funct. Mater.,16(4), 520 (2006).
29. N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'Keeffe and O. M. Yaghi, Science, 300(5622), 1127 (2003).
30. H. W. Langmi, D. Book, A. Walton, S. R. Johnson, M. M. AlMamouri, J. D. Speight, P. P. Edward, I. R. Harris and P. A. Anderson, J. Alloys Compd., 404, 637 (2005).
31. T. P. McNicholas, A. Wang, K. O’Neill, R. J. Anderson, N. P. Stadie,A. Kleinhammes, P. Parilla, L. Simpson, C. C. Ahn, Y. Wnag, Y.Wu and J. Liu, J. Phys. Chem. C, 114(32), 13902 (2010).
32. A. Minoda, S. Oshima, H. Iki and E. Akiba, J. Alloys Compd., 606,112 (2014).
33. A. J. Romero-Anaya, M. A. Lillo-Ródenas and A. Linares-Solano,Carbon, 48(9), 2625 (2010).
34. A. J. Romero-Anaya, M. Ouzzine, M. A. Lillo-Rodenas and A.Linares-Solano, Carbon, 68, 296 (2014).
35. Z. Hu and M. P. Srinivasan, Micropor. Mesopor. Mater., 27(1), 11 (1999).
36. A. S. Ello, L. K. C. de Souza, A. Trokourey and M. Jaroniec, Micropor. Mesopor. Mater., 180, 280 (2013).
37. D. Malik, A. W. Trochimczuk, A. Jyo and W. Tylus, Carbon, 46(2),310 (2008).
38. G. Lee, T. Yoon and Z. Shon, Clean Technol., 19(3), 279 (2013).
39. U. K. Chun, Proceedings of the 1st workshop on radioactive waste treatment technologies, Taejon (Korea, Republic of ), 28 Oct. 1997,PB286P (1997).
40. M. Matsuda and K. Funabashi, J. Polym. Sci. Part A: Polym. Chem.,25(2), 669 (1987).
41. S. Guo, J. Peng, W. Li, J, Yang, L, Zhang, S. Zhang and H. Xia,Appl. Surf. Sci., 255(20), 8443 (2009).
42. W. Xing, S. P. Zhuo and X, Gao, Mater. Lett., 63(15), 1311 (2009).
43. W. Xing, C. C. Huang, S. P. Zhuo, X. Yuan, G. O. Wang, D. Hulicova-Jurcakova, Z. F. Yan and G. Q. Lu, Carbon, 47(7), 1715 (2009).
44. T. Roussel, R. J. M. Pellenq, M. Bienfait, C, Vix-Guterl, R. Gadiou,F. Beguin and M. Johnson, Langmuir, 22(10), 4614 (2006).
45. R. Gadiou, S. E. Saadallah, T. Piquero, P. David, J. Parmentier and C. Vix-Guterl, Micropor. Mesopor. Mater., 79(1-3), 121 (2005).
46. K. K. Murray, R. K. Boyd, M. N. Eberlin, G. J. Langley, L. Li and Y.Naito, Pure Appl. Chem., 85(7), 1515 (2013).
47. Z. Yang, Y. Xia and R. Mokaya, J. Am. Chem. Soc., 129(6), 1673 (2007).
48. Y. Gogotsi, C. Portet, S. Osswald, J. M. Simmons, T. Yildirim, G. Laudisio and J. E. Fischer, Int. J. Hydrogen Energy, 34(15), 6314 (2009).
49. N. M. Musyoka, M. Wdowin, K. M. Rambau, W. Franus, R. Panek,J. Madej and D. Czarna-Juszkiewicz, Renew. Energy, 155, 1264 (2020).
50. K. C. Kemp, S. B. Baek, W. G. Lee, M. Meyyappan and K. S. Kim,Nanotechnology, 26(38), 385602 (2015).
51. G. Yushin, R. Dash, J. Jagiello, J. E. Fisher and Y. Gogotsi, Adv. Funct.Mater., 16, 2288 (2006).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로