Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 21, 2023
Revised March 14, 2023
Accepted March 31, 2023
- Acknowledgements
- This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT; MSIT) (No. 2021R1A4A1031357). This research was also supported by the C1 Gas Refinery Program through the NRF funded by the Korea government (MSIT) (No. 2017M3D3 A1A01037001).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Effects of Ni/Al2O3 catalyst treatment condition on thermocatalytic conversion of spent disposable wipes
Abstract
Municipal solid waste (MSW) management is an essential municipal service. Proper waste treatment is an
important part of the waste management. Thermocatalytic waste upcycling has recently gained great interest and attention as a method to extract value from waste, which potentially substitutes traditional waste treatment methods. This
study aims at demonstrating the potential for thermocatalytic waste upcycling using spent disposable wipes as an MSW
surrogate. Two different Ni/Al2O3 catalysts were prepared, treated under two different atmospheres (N2 and CO2). The
catalyst treated in N2 (Ni/Al2O3-N2) exhibited a higher surface metallic Ni site than the catalyst treated in CO2 (Ni/
Al2O3-CO2). The use of the Ni/Al2O3-N2 increased the yield of gas pyrolysate and decreased the yield of byproduct
(e.g., wax), compared with no catalyst and the Ni/Al2O3-CO2. In particular, the Ni/Al2O3-N2 catalyst affected the generation of gaseous hydrogen (H2) by increasing the H2 yield by up to 102% in comparison with the other thermocatalytic systems. The highest H2 yield obtained with the Ni/Al2O3-N2 was attributed to the most surface metallic Ni sites.
However, the Ni/Al2O3-N2 catalyst led to char having a lower higher heating value than the other catalysts due to its
lowest carbon content. The results indicated that the reduction treatment environment for Ni/Al2O3 catalyst influences
thermocatalytic conversion product yields of spent disposable wipes, including enhanced H2 production.
Keywords
References
2. T. Hu, M. Shen and W. Tang, Environ. Sci. Pollut. Res., 29, 284 (2022).
3. Y. Zhang, Z. Wen, W. Lin, Y. Hu, V. Kosajan and T. Zhang, Resour.Conserv. Recycl., 174, 105803 (2021).
4. H. Xing, A. R. Krogmann, C. Vaught and E. Chambers, Cosmetics, 6, 44 (2019).
5. Grand View Research, Wet wipes market size, https://www.grandviewresearch.com/industry-analysis/wet-wipes-market-report (accessed 21 February, 2023).
6. J. N. Hahladakis and E. Iacovidou, Sci. Total Environ., 630, 1394 (2018).
7. J. Lee, S. Jeong and K.-J. Chae, Sci. Total Environ., 784, 147144 (2021).
8. M. I. Romero-Gómez, M. A. Pedreño-Rojas, F. Pérez-Gálvez and P. Rubio-de-Hita, J. Build. Eng., 34, 101874 (2021).
9. R.-L. Mitchell, M. Gunkel, J. Waschnewski and P. U. Thamsen,“Nonwoven wet wipes can be hazardous substances in wastewater systems—evidences from a field measurement campaign in berlin, germany”, Frontiers in Water-Energy-Nexus—Nature-Based
Solutions, Advanced Technologies and Best Practices for Environmental Sustainability, Springer International Publishing, Cham, pp.313-316 (2020).
10. V. C. Shruti, F. Pérez-Guevara and G. Kutralam-Muniasamy, Environ. Challeng., 5, 100267 (2021).
11. A. L. P. Silva, J. C. Prata, A. C. Duarte, A. M. V. M. Soares, D. Barceló and T. Rocha-Santos, Case Stud. Chem. Environ. Eng., 3, 100072
(2021).
12. N. P. Ivleva, A. C. Wiesheu and R. Niessner, Angew. Chem. Int. Ed.,56, 1720 (2017).
13. O. Ó. Briain, A. R. Marques Mendes, S. McCarron, M. G. Healy and L. Morrison, Water Res., 182, 116021 (2020).
14. A. Allen, Eng. Geol., 60, 3 (2001).
15. V. Ishchenko, Int. J. Environ. Waste Manag., 20, 66 (2017).
16. P. K. Rai, J. Lee, R. J. C. Brown and K.-H. Kim, J. Clean. Prod., 291,125240 (2021).
17. T. S. M. Amelia, W. M. A. W. M. Khalik, M. C. Ong, Y. T. Shao, H.-J.Pan and K. Bhubalan, Prog. Earth Planet. Sci., 8, 12 (2021).
18. K. Duraisamy, R. Ismailgani, S. A. Paramasivam, G. Kaliyaperumal and D. Dillikannan, Energy Environ., 32, 481 (2021).
19. P. K. Rai, J. Lee, R. J. C. Brown and K.-H. Kim, J. Hazard. Mater.,403, 123910 (2021).
20. R. V. Moharir, P. Gautam and S. Kumar, “Waste treatment processes/technologies for energy recovery”, Current developments in biotechnology and bioengineering, Kumar, S., Kumar, R. and Pandey, A., eds., Elsevier, pp. 53-77 (2019).
21. Y. Lee, S. Kim, E. E. Kwon and J. Lee, J. CO2 Util., 36, 76 (2020).
22. J. Vehlow, Waste Manage., 37, 58 (2015).
23. L. Makarichi, W. Jutidamrongphan and K.-a. Techato, Renew. Sust.Energ. Rev., 91, 812 (2018).
24. R. R. Schmidt, O. Pol, D. Basciotti and J. Page, EPJ Web of Conferences, 33, 04002 (2012).
25. A. A. Patil, A. A. Kulkarni and B. B. Patil, J. Comput. Technol., 3, 12 (2014).
26. S. Huysman, J. De Schaepmeester, K. Ragaert, J. Dewulf and S. De Meester, Resour. Conserv. Recycl., 120, 46 (2017).
27. J.-Y. Kim, H. W. Lee, S. M. Lee, J. Jae and Y.-K. Park, Bioresour. Technol., 279, 373 (2019).
28. H. W. Ryu, D. H. Kim, J. Jae, S. S. Lam, E. D. Park and Y.-K. Park,Bioresour. Technol., 310, 123473 (2020).
29. S. Pyo, Y.-M. Kim, Y. Park, S. B. Lee, K.-S. Yoo, M. A. Khan, B.-H.Jeon, Y. J. Choi, G. H. Rhee and Y.-K. Park, J. Ind. Eng. Chem., 103,136 (2021).
30. M. W. Seo, S. H. Lee, H. Nam, D. Lee, D. Tokmurzin, S. Wang and Y.-K. Park, Bioresour. Technol., 343, 126109 (2022).
31. D. Lee, H. Nam, M. W. Seo, S. H. Lee, D. Tokmurzin, S. Wang and Y.-K. Park, Chem. Eng. J., 447, 137501 (2022).
32. S. Valizadeh, H. Hakimian, A. Farooq, B.-H. Jeon, W.-H. Chen,S. H. Lee, S.-C. Jung, M. W. Seo and Y.-K. Park, Bioresour. Technol.,365, 128143 (2022).
33. O. A. Qamar, F. Jamil, M. Hussain, A. a. H. Al-Muhtaseb, A. Inayat,A. Waris, P. Akhter and Y.-K. Park, Chem. Eng. J., 454, 140240 (2023).
34. S. M. Al-Salem, A. Antelava, A. Constantinou, G. Manos and A.Dutta, J. Environ. Manage., 197, 177 (2017).
35. J. Lee, E. E. Kwon, S. S. Lam, W.-H. Chen, J. Rinklebe and Y.-K.Park, J. Clean. Prod., 321, 128989 (2021).
36. C. Park, N. Lee, I. S. Cho, B. Ahn, H. K. Yu and J. Lee, Korean J.Chem. Eng., 39, 3343 (2022).
37. W. Yang, K.-H. Kim and J. Lee, J. Clean. Prod., 376, 134292 (2022).
38. C. Park, H. Lee, N. Lee, B. Ahn and J. Lee, J. Hazard. Mater., 440,129825 (2022).
39. S. Kim, W. Yang, H. S. Lee, Y. F. Tsang and J. Lee, J. Clean. Prod.,372, 133763 (2022).
40. Y. Nagai, T. Ogawa, L. Yu Zhen, Y. Nishimoto and F. Ohishi,Polym. Degrad. Stab., 56, 115 (1997).
41. N. Lee, K.-Y. A. Lin and J. Lee, Environ. Res., 213, 113560 (2022).
42. G. Wu, C. Zhang, S. Li, Z. Han, T. Wang, X. Ma and J. Gong, ACS Sustain. Chem. Eng., 1, 1052 (2013).
43. R. R. Davda, J. W. Shabaker, G. W. Huber, R. D. Cortright and J. A.Dumesic, Appl. Catal. B: Environ., 56, 171 (2005).
44. S. Adhikari, S. Fernando and A. Haryanto, Energy Fuels, 21, 2306 (2007).
45. B. Zhang, X. Tang, Y. Li, Y. Xu and W. Shen, Int. J. Hydrog. Energy,32, 2367 (2007).
46. S. Adhikari, S. Fernando and A. Haryanto, Catal. Today, 129, 355 (2007).
47. Y. Cui, V. Galvita, L. Rihko-Struckmann, H. Lorenz and K. Sundmacher, Appl. Catal. B: Environ., 90, 29 (2009).
48. E. A. Sánchez, M. A. D'Angelo and R. A. Comelli, Int. J. Hydrog.Energy, 35, 5902 (2010).
49. I. Rossetti, A. Gallo, V. Dal Santo, C. L. Bianchi, V. Nichele, M.Signoretto, E. Finocchio, G. Ramis and A. Di Michele, ChemCatChem, 5, 294 (2013).
50. S. Kim, J. Byun, H. Park, N. Lee, J. Han and J. Lee, Energy, 241,122876 (2022).
51. H. Zhang, Y. Wang, S. Shao and R. Xiao, Sci. Rep., 6, 37513 (2016).
52. J. L. Ewbank, L. Kovarik, F. Z. Diallo and C. Sievers, Appl. Catal. A:Gen., 494, 5