ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 21, 2023
Revised March 14, 2023
Accepted March 31, 2023
Acknowledgements
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT; MSIT) (No. 2021R1A4A1031357). This research was also supported by the C1 Gas Refinery Program through the NRF funded by the Korea government (MSIT) (No. 2017M3D3 A1A01037001).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Effects of Ni/Al2O3 catalyst treatment condition on thermocatalytic conversion of spent disposable wipes

1Department of Global Smart City, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Korea 2Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Korea 3Chemical and Process Technology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Daejeon 34114, Korea 4School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Korea
jechanlee@skku.edu
Korean Journal of Chemical Engineering, October 2023, 40(10), 2472-2479(8), 10.1007/s11814-023-1461-8
downloadDownload PDF

Abstract

Municipal solid waste (MSW) management is an essential municipal service. Proper waste treatment is an important part of the waste management. Thermocatalytic waste upcycling has recently gained great interest and attention as a method to extract value from waste, which potentially substitutes traditional waste treatment methods. This study aims at demonstrating the potential for thermocatalytic waste upcycling using spent disposable wipes as an MSW surrogate. Two different Ni/Al2O3 catalysts were prepared, treated under two different atmospheres (N2 and CO2). The catalyst treated in N2 (Ni/Al2O3-N2) exhibited a higher surface metallic Ni site than the catalyst treated in CO2 (Ni/ Al2O3-CO2). The use of the Ni/Al2O3-N2 increased the yield of gas pyrolysate and decreased the yield of byproduct (e.g., wax), compared with no catalyst and the Ni/Al2O3-CO2. In particular, the Ni/Al2O3-N2 catalyst affected the generation of gaseous hydrogen (H2) by increasing the H2 yield by up to 102% in comparison with the other thermocatalytic systems. The highest H2 yield obtained with the Ni/Al2O3-N2 was attributed to the most surface metallic Ni sites. However, the Ni/Al2O3-N2 catalyst led to char having a lower higher heating value than the other catalysts due to its lowest carbon content. The results indicated that the reduction treatment environment for Ni/Al2O3 catalyst influences thermocatalytic conversion product yields of spent disposable wipes, including enhanced H2 production.

References

1. Y. Zhang, Z. Wen, Y. Hu and T. Zhang, J. Clean. Prod., 364, 132684 (2022).
2. T. Hu, M. Shen and W. Tang, Environ. Sci. Pollut. Res., 29, 284 (2022).
3. Y. Zhang, Z. Wen, W. Lin, Y. Hu, V. Kosajan and T. Zhang, Resour.Conserv. Recycl., 174, 105803 (2021).
4. H. Xing, A. R. Krogmann, C. Vaught and E. Chambers, Cosmetics, 6, 44 (2019).
5. Grand View Research, Wet wipes market size, https://www.grandviewresearch.com/industry-analysis/wet-wipes-market-report (accessed 21 February, 2023).
6. J. N. Hahladakis and E. Iacovidou, Sci. Total Environ., 630, 1394 (2018).
7. J. Lee, S. Jeong and K.-J. Chae, Sci. Total Environ., 784, 147144 (2021).
8. M. I. Romero-Gómez, M. A. Pedreño-Rojas, F. Pérez-Gálvez and P. Rubio-de-Hita, J. Build. Eng., 34, 101874 (2021).
9. R.-L. Mitchell, M. Gunkel, J. Waschnewski and P. U. Thamsen,“Nonwoven wet wipes can be hazardous substances in wastewater systems—evidences from a field measurement campaign in berlin, germany”, Frontiers in Water-Energy-Nexus—Nature-Based
Solutions, Advanced Technologies and Best Practices for Environmental Sustainability, Springer International Publishing, Cham, pp.313-316 (2020).
10. V. C. Shruti, F. Pérez-Guevara and G. Kutralam-Muniasamy, Environ. Challeng., 5, 100267 (2021).
11. A. L. P. Silva, J. C. Prata, A. C. Duarte, A. M. V. M. Soares, D. Barceló and T. Rocha-Santos, Case Stud. Chem. Environ. Eng., 3, 100072
(2021).
12. N. P. Ivleva, A. C. Wiesheu and R. Niessner, Angew. Chem. Int. Ed.,56, 1720 (2017).
13. O. Ó. Briain, A. R. Marques Mendes, S. McCarron, M. G. Healy and L. Morrison, Water Res., 182, 116021 (2020).
14. A. Allen, Eng. Geol., 60, 3 (2001).
15. V. Ishchenko, Int. J. Environ. Waste Manag., 20, 66 (2017).
16. P. K. Rai, J. Lee, R. J. C. Brown and K.-H. Kim, J. Clean. Prod., 291,125240 (2021).
17. T. S. M. Amelia, W. M. A. W. M. Khalik, M. C. Ong, Y. T. Shao, H.-J.Pan and K. Bhubalan, Prog. Earth Planet. Sci., 8, 12 (2021).
18. K. Duraisamy, R. Ismailgani, S. A. Paramasivam, G. Kaliyaperumal and D. Dillikannan, Energy Environ., 32, 481 (2021).
19. P. K. Rai, J. Lee, R. J. C. Brown and K.-H. Kim, J. Hazard. Mater.,403, 123910 (2021).
20. R. V. Moharir, P. Gautam and S. Kumar, “Waste treatment processes/technologies for energy recovery”, Current developments in biotechnology and bioengineering, Kumar, S., Kumar, R. and Pandey, A., eds., Elsevier, pp. 53-77 (2019).
21. Y. Lee, S. Kim, E. E. Kwon and J. Lee, J. CO2 Util., 36, 76 (2020).
22. J. Vehlow, Waste Manage., 37, 58 (2015).
23. L. Makarichi, W. Jutidamrongphan and K.-a. Techato, Renew. Sust.Energ. Rev., 91, 812 (2018).
24. R. R. Schmidt, O. Pol, D. Basciotti and J. Page, EPJ Web of Conferences, 33, 04002 (2012).
25. A. A. Patil, A. A. Kulkarni and B. B. Patil, J. Comput. Technol., 3, 12 (2014).
26. S. Huysman, J. De Schaepmeester, K. Ragaert, J. Dewulf and S. De Meester, Resour. Conserv. Recycl., 120, 46 (2017).
27. J.-Y. Kim, H. W. Lee, S. M. Lee, J. Jae and Y.-K. Park, Bioresour. Technol., 279, 373 (2019).
28. H. W. Ryu, D. H. Kim, J. Jae, S. S. Lam, E. D. Park and Y.-K. Park,Bioresour. Technol., 310, 123473 (2020).
29. S. Pyo, Y.-M. Kim, Y. Park, S. B. Lee, K.-S. Yoo, M. A. Khan, B.-H.Jeon, Y. J. Choi, G. H. Rhee and Y.-K. Park, J. Ind. Eng. Chem., 103,136 (2021).
30. M. W. Seo, S. H. Lee, H. Nam, D. Lee, D. Tokmurzin, S. Wang and Y.-K. Park, Bioresour. Technol., 343, 126109 (2022).
31. D. Lee, H. Nam, M. W. Seo, S. H. Lee, D. Tokmurzin, S. Wang and Y.-K. Park, Chem. Eng. J., 447, 137501 (2022).
32. S. Valizadeh, H. Hakimian, A. Farooq, B.-H. Jeon, W.-H. Chen,S. H. Lee, S.-C. Jung, M. W. Seo and Y.-K. Park, Bioresour. Technol.,365, 128143 (2022).
33. O. A. Qamar, F. Jamil, M. Hussain, A. a. H. Al-Muhtaseb, A. Inayat,A. Waris, P. Akhter and Y.-K. Park, Chem. Eng. J., 454, 140240 (2023).
34. S. M. Al-Salem, A. Antelava, A. Constantinou, G. Manos and A.Dutta, J. Environ. Manage., 197, 177 (2017).
35. J. Lee, E. E. Kwon, S. S. Lam, W.-H. Chen, J. Rinklebe and Y.-K.Park, J. Clean. Prod., 321, 128989 (2021).
36. C. Park, N. Lee, I. S. Cho, B. Ahn, H. K. Yu and J. Lee, Korean J.Chem. Eng., 39, 3343 (2022).
37. W. Yang, K.-H. Kim and J. Lee, J. Clean. Prod., 376, 134292 (2022).
38. C. Park, H. Lee, N. Lee, B. Ahn and J. Lee, J. Hazard. Mater., 440,129825 (2022).
39. S. Kim, W. Yang, H. S. Lee, Y. F. Tsang and J. Lee, J. Clean. Prod.,372, 133763 (2022).
40. Y. Nagai, T. Ogawa, L. Yu Zhen, Y. Nishimoto and F. Ohishi,Polym. Degrad. Stab., 56, 115 (1997).
41. N. Lee, K.-Y. A. Lin and J. Lee, Environ. Res., 213, 113560 (2022).
42. G. Wu, C. Zhang, S. Li, Z. Han, T. Wang, X. Ma and J. Gong, ACS Sustain. Chem. Eng., 1, 1052 (2013).
43. R. R. Davda, J. W. Shabaker, G. W. Huber, R. D. Cortright and J. A.Dumesic, Appl. Catal. B: Environ., 56, 171 (2005).
44. S. Adhikari, S. Fernando and A. Haryanto, Energy Fuels, 21, 2306 (2007).
45. B. Zhang, X. Tang, Y. Li, Y. Xu and W. Shen, Int. J. Hydrog. Energy,32, 2367 (2007).
46. S. Adhikari, S. Fernando and A. Haryanto, Catal. Today, 129, 355 (2007).
47. Y. Cui, V. Galvita, L. Rihko-Struckmann, H. Lorenz and K. Sundmacher, Appl. Catal. B: Environ., 90, 29 (2009).
48. E. A. Sánchez, M. A. D'Angelo and R. A. Comelli, Int. J. Hydrog.Energy, 35, 5902 (2010).
49. I. Rossetti, A. Gallo, V. Dal Santo, C. L. Bianchi, V. Nichele, M.Signoretto, E. Finocchio, G. Ramis and A. Di Michele, ChemCatChem, 5, 294 (2013).
50. S. Kim, J. Byun, H. Park, N. Lee, J. Han and J. Lee, Energy, 241,122876 (2022).
51. H. Zhang, Y. Wang, S. Shao and R. Xiao, Sci. Rep., 6, 37513 (2016).
52. J. L. Ewbank, L. Kovarik, F. Z. Diallo and C. Sievers, Appl. Catal. A:Gen., 494, 5

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로