Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 28, 2023
Revised July 5, 2023
Accepted July 12, 2023
- Acknowledgements
- Conceptualization, C. H. Lee; methodology, C. H. Lee and W. S. Chen; validation, C. H. Lee and W. C. Chen; formal analysis, C. H. Lee; investigation, C. H. Lee; data curation, W. S. Chen; writing—original draft preparation, C.-H. Lee; writing—review and editing, C. H. Lee and W. C. Chen; visualization, C.-H. Lee; supervision, W. S. Chen. All authors have read and agreed to the published version of the manuscript. Funding This research received no external funding. Data Availability Statement Not applicable.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Circulation of boron resources from desalination brine through solvent extraction (TMPD/2-ethylhexanol with kerosene) and ionic-liquid extraction (ALiCy/kerosene) methods
Abstract
Desalination technologies have been widely implemented since the 1970s to solve the problem of freshwater scarcity. However, brine, the by-product of the desalination process, which has a higher salinity and total dissolved
solids (TDS) than seawater, can cause severe environmental problems. For instance, brine could change the composition and temperature of seawater, decrease dissolved oxygen, and influence the organism’s habitat. Under this circumstance, circulating critical resources from brine is acceptable for minimizing brine disposal. This study employed two
extraction systems (TMPD, 2,2,4-trimethyl-1,3-pentanediol and ALiCy, trioctyl/decylmethylammonium-bis(2,4,4-trimethilpentyl) phosphinate), which are solvent extraction and ionic liquid extraction, to recover boron from brine. The
parameters, including pH value, concentrations of TMPD and ALiCy, O/A (organic/aqueous) and I/A (ionic liquid/aqueous) ratios, contacting time, and reaction temperature of boron extraction through the TMPD and ALiCy systems,
would be optimized. The results reveal that extraction efficiencies of TMPD and ALiCy systems were 93.8% and 72.3%,
respectively. Moreover, different agents can be evaluated to strip boron from TMPD and ALiCy. The boron product
and the extractants could then be generated and reused. Briefly, the environmental hazards caused by the desalination
brine and boron resources can be reduced and circulated through this research with two different extraction systems.
References
2. N. Ghaffour, Desalin. Water. Treat., 5, 48 (2009).
3. V. G. Gude, Rev. Environ. Sci. Biotechnol., 16, 591 (2017).
4. A. Bazargan, A multidisciplinary introduction to desalination, Stylus Publishing, LLC (2018).
5. J. Kucera, Desalination: Water from water, John Wiley & Sons (2019).
6. N. Kress, Marine impacts of seawater desalination: Science, management, and policy, Elsevier (2019).
7. M. N. Soliman, F. Z. Guen, S. A. Ahmed, H. Saleem, M. J. Khalil and S. J. Zaidi, Process Saf. Environ., 147, 589 (2021).
8. A. Panagopoulos, Environ. Sci. Pollut. Res., 28, 21009 (2021).
9. A. Panagopoulos and K.-J. Haralambous, J. Environ. Chem. Eng., 8, 104418 (2020).
10. A. Panagopoulos, K.-J. Haralambous and M. Loizidou, Sci. Total Environ., 693, 133545 (2019).
11. A. Panagopoulos, Int. J. Energ. Res., 44, 473 (2020).
12. A. S. Bello, N. Zouari, D. A. Da'ana, J. N. Hahladakis and M. A. AlGhouti, J. Environ. Manage., 288, 112358 (2021).
13. A. Giwa, V. Dufour, F. Al Marzooqi, M. Al Kaabi and S. Hasan,Desalination, 407, 1 (2017).
14. A. Dindi, D. V. Quang and M. R. Abu-Zahra, Appl. Energy, 154,298 (2015).
15. M. H. El-Naas, A. F. Mohammad, M. I. Suleiman, M. Al Musharfy and A. H. Al-Marzouqi, Desalination, 411, 69 (2017).
16. D. Kang, H. Jo, M.-G. Lee and J. Park, Chem. Eng. J., 284, 1270 (2016).
17. Y. Yoo, D. Kang, S. Park and J. Park, Desalination, 479, 114325 (2020).
18. C.-H. Lee, P.-H. Chen and W.-S. Chen, Water, 13, 3463 (2021).
19. Z.-Y. Guo, Z.-Y. Ji, Q.-B. Chen, J. Liu, Y.-Y. Zhao, F. Li, Z.-Y. Liu and J.-S. Yuan, J. Clean. Prod., 193, 338 (2018).
20. F. Arroyo, J. Morillo, J. Usero, D. Rosado and H. El Bakouri, Desalination, 468, 114073 (2019).
21. G. Naidu, S. Jeong, M. A. H. Johir, A. G. Fane, J. Kandasamy and S.Vigneswaran, Water Res., 123, 321 (2017).
22. W.-S. Chen, C.-H. Lee, Y.-F. Chung, K.-W. Tien, Y.-J. Chen and Y.-A.Chen, Metals, 10, 607 (2020).
23. C. H. Lee and W. S. Chen, Desalin. Water. Treat., 235, 193 (2021).
24. C. H. Lee, W. S. Chen and J. Y. Wu, Desalin. Water. Treat., 236, 69 (2021).
25. A. I. Wiechert, A. P. Ladshaw, G. A. Gill, J. R. Wood, S. Yiacoumi and C. Tsouris, Ind. Eng. Chem. Res., 57, 17237 (2018).
26. C.-H. Lee, P.-H. Chen and W.-S. Chen, Desalin. Water. Treat., 264,133 (2022).
27. M. Figueira, M. Reig, M.F. de Labastida, J.L. Cortina and C. Valderrama, J. Environ. Manage., 314, 114984 (2022).
28. U. USGS, “Geological survey. Mineral commodity summaries 2022”,Washington DC: US Government Publishing Office (2022).
29. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K.Watanabe, T. Taniguchi, P. Kim and K. L. Shepard, Nat. Nanotechnol., 5, 722 (2010).
30. W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Crommie and A. Zettl, Appl. Phys. Lett., 98, 242105 (2011).
31. L. Calucci and C. Forte, “Boron nitride nanotubes as magnetic resonance imaging contrast agents”, Boron nitride nanotubes in nanomedicine, Elsevier (2016).
32. J. H. Klotz, J. Moss, R. Zhao, L. R. Davis Jr. and R. S. Patterson, J.Econ. Entomol., 87, 1534 (1994).
33. H. Irschik, D. Schummer, K. Gerth, G. Hofle and H. Reichenbach, J. Antibiot., 48, 26 (1995).
34. G. Najafpour, Biochemical engineering and biotechnology, Elsevier (2015).
35. H. Chen and L. Wang, Technologies for biochemical conversion of biomass, Academic Press (2016).
36. Z. Lei, B. Chen, Y.-M. Koo and D. R. MacFarlane, Introduction:Ionic liquids, ACS Publications (2017).
37. K. R. Seddon, A. Stark and M.-J. Torres, Pure Appl. Chem., 72,2275 (2000).
38. J. Pawliszyn, Sampling and sample preparation in field and laboratory: Fundamentals and new directions in sample preparation, Elsevier (2002).
39. H. Luo, S. Dai, P. V. Bonnesen, A. Buchanan, J. D. Holbrey, N. J.Bridges and R. D. Rogers, Anal. Chem., 76, 3078 (2004).
40. M. Llaver, G. Mafra, J. Merib, R. Lucena, R. G. Wuilloud and E.Carasek, “Ionic liquids”, Analytical sample preparation with nanoand other high-performance materials, Elsevier (2021).
41. Y. Luo, Q. Chen and X. Shen, Sep. Purif. Technol., 227, 115704 (2019).
42. B. Pospiech, Hydrometallurgy, 154, 88 (2015).
43. A. Kumari, M. K. Sinha, S. K. Sahu and B. D. Pandey, Solvent Extr.Ion Exch., 34, 469 (2016).
44. S. Nayak and N. Devi, Hydrometallurgy, 171, 191 (2017).
45. A. Fortuny, M. Coll and A. Sastre, Sep. Purif. Technol., 97, 137 (2012).
46. X. Peng, D. Shi, Y. Zhang, L. Zhang, L. Ji and L. Li, J. Mol. Liq., 326,115301 (2021).
47. Q. Liu, L. Ma, S. Wang, Z. Ni, X. Fu, J. Wang and Q. Zheng, J. Mol.Liq., 325, 114573 (2021).
48. C. J. Bradaric, A. Downard, C. Kennedy, A. J. Robertson and Y.Zhou, Green Chem., 5, 143 (2003).
49. D.-s. Zheng, J. Li, K. Zhou, J. h. Luo and Y. Jin, J. Chem. Eng. Data,55, 58 (2010).
50. S. Biswas, P. Pathak, S. Roy and V. Manchanda, Sep. Sci. Technol.,46, 592 (2011).
51. V. N. H. Nguyen, T. H. Nguyen and M. S. Lee, Metals, 10, 1105 (2020).
52. J. Guo, Y. Yang, X. Gao and J. Yu, Hydrometallurgy, 197, 105477 (2020).
53. M. Coll, A. Fortuny and A. Sastre, Chem. Eng. Res. Des., 92, 758 (2014).