Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 22, 2023
Revised July 14, 2023
Accepted August 9, 2023
- Acknowledgements
- This study was funded by the National Research Foundation of Korea (grant number: NRF-2022R1F1A1059495).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Enhanced antibiotic removal by waste coffee grounds prepared via water washing and KOH activation
Abstract
This study presents a novel approach for effectively removing amoxicillin (AMX) from waste coffee
grounds (CGs) using eco-friendly activated biochar-based adsorbents. To avoid the use of toxic chemicals, the adsorbents, called ACGs (activated CGs), were prepared by a water washing method followed by KOH activation. The
adsorption performance of the ACGs was evaluated using various parameters such as the Freundlich isotherm, Langmuir isotherm, adsorption density, and pseudo-second-order equation to determine their maximum adsorption capacity and kinetics. Among the ACGs tested, ACG-4a, activated with KOH after water washing, exhibited significantly
higher adsorption capacity (740.7 mg/g) compared to ACG-4b, activated with KOH after NaOH washing (549.5 mg/g).
The superior adsorption capacity of ACG-4a can be attributed to its specific surface area. Notably, the ACGs demonstrated the highest AMX-adsorbing capacity when compared to other adsorbents.
References
2. Z. Zhang, Z. Xu and X. Wang, Environ. Int., 176, 107964 (2023).
3. M. Khalid, X. Liu, B. Zheng, L. Su, D. J. Kotze, H. Setälä, M. Ali, A.Rehman, S. U. Rahman and N. Hui, J. Clean. Prod., 409, 137275 (2023).
4. Q. Zheng, Y. Zhang, Q. Zhang, Y. Wang and G. Yu, Chemosphere,319, 138039 (2023).
5. S. Li, Y. Wu, H. Zheng, H. Li, Y. Zheng, J. Nan, J. Ma, D. Nagarajan and J. S. Chang, Chemosphere, 311, 136977 (2023).
6. M. Zou, W. Tian, M. Chu, Z. Lu, B. Liu and D. Xu, Sci. Total Environ., 879, 163057 (2023).
7. M. Lv, F. Chen, Z. Zhang, D. Li, M. Hassan, Z. Gong and Y. Feng,Sep. Purif. Technol., 315, 123643 (2023).
8. J. Lee, S. Lee and Y. K. Park, Bioresour. Technol., 385, 129419 (2023).
9. P. Bhavani, M. Hussain and Y. K. Park, J. Cleaner Prod., 330, 129899 (2022).
10. A. Srivastava, H. Dave, B. Prasad, D. M. Maurya, M. Kumari, M.Sillanpää and K. S. Prasad, Inorg. Chem. Commun., 144, 109895 (2022).
11. J. Roh, H. N. Umh, C. M. Yoo, S. Rengaraj, B. Lee and Y. Kim,Korean J. Chem. Eng., 29, 903 (2012).
12. L. L. Kang, Y. N. Zeng, Y. T. Wang, J. G. Li, F. P. Wang, Y. J. Wang,Q. Yu, X. M. Wang, R. Ji, D. Gao and Z. Fang, J. Water Proc. Eng.,49, 103178 (2022).
13. H. Laksaci, A. Khelifi, B. Belhamdi and M. Trari, J. Environ. Chem.Eng., 5, 5061 (2017).
14. M. Gurrath, T. Kuretzky, H. P. Boehm, L. B. Okhlopkova, A. S. Lisitsyn and V. A. Likholobov, Carbon, 38, 1241 (2000).
15. C. H. Wang, W. C. Wen, H. C. Hsu and B. Y. Yao, Adv. Powder Technol., 27, 1387 (2016).
16. Y. S. Ho and G. McKay, Water Res., 34, 735 (2000).
17. W. Travis, S. Gadipelli and Z. Guo, RCS Adv., 5, 29558 (2015).
18. A. S. González, M. G. Plaza, J. J. Pis, F. Rubiera and C. Pevida, Energy Procedia, 37, 134 (2013).
19. H. Laksaci, A. Khelifi, M. Trari and A. Addoun, J. Clean. Prod., 147,254 (2017).
20. X. Liu, S. Zhang, X. Wen, X. Chen, Y. Wen, X. Shi and E. Mijowska,Sci. Rep., 10, 3518 (2020).
21. R. Nandi, M. K. Jha, S. K. Guchhait, D. Suttradhar and S. Yadav,ACS Omega, 8, 4802 (2023).
22. F. Lü, X. Lu, S. Li, H. Zhang, L. Shao and P. He, Chem. Eng. J., 429,132203 (2022).
23. P. Pinij, N. Tippayawong, Y. Chimupala and S. Chaiklangmuang, J.Anal. Appl. Pyrolysis, 157, 105234 (2021).
24. E. Raymundo-Pinero, P. Azais, T. Cacciaguerra, D. Cazorla-Amoros, A. Linares-Solano and F. Beguin, Carbon, 43, 786 (2005).
25. M. J. Kim, S. W. Choi, H. Kim, S. Mun and K. B. Lee, Chem. Eng.J., 397, 125404 (2020).
26. C. F. Wang, C. L. Wu, S. W. Kuo, W.-S. Hung, K. J. Lee, H. C. Tsai,C. J. Chang and J. Y. Lai, Sci. Rep., 10, 12769 (2020).
27. M. D. Donohue and G. L. Aranovich, Adv. Colloid Interface Sci.,76-77, 137 (1998).
28. X. Liu, C. Sun, H. Liu, W. H. Tan, W. Wang and C. Snape, Chem.Eng. J., 361, 199 (2019).
29. H. Nabipour, M. H. Sadr and N. Thomas, J. Exp. Nanosci., 10, 1269 (2015).
30. A. A. Aryee, R. Han and L. Qu, J. Clean. Prod., 368, 133140 (2022).
31. Y. Kim, C. Kim, I. Choi, S. Rengaraj and J. Yi, Environ. Sci. Technol., 38, 924 (2004).
32. J. D. Seader and E. J. Henley, Separation process principles, John Wiley,New York (1998).
33. S. Wang, Y. R. Lee, Y. Won, H. Kim, S. E. Jeong, B. W. Hwang,A. R. Cho, J. Y. Kim, Y. C. Park, H. Nam, D. H. Lee, H. Kim and S. H. Jo, Chem. Eng. J., 437, 135378 (2022).
34. J. C. Bullen, S. Saleesongsom, K. Gallagher and D. J. Weiss, Langmuir, 37, 3189 (2021).
35. J. M. Chab and P. N. Nomngongo, Emerg. Contam., 5, 143 (2019).
36. J. Imanipoor, A. Ghafelebashi, M. Mohammadi, M. Dinari and
M. R. Eshsani, Colloids Surf. A Physicochem. Eng. Asp., 611, 125792 (2021).
37. A. A. Mohammed, T. J. Al-Musawi, S. L. Kareem, M. Zarrabi and A. M. Al-Ma’abreh, Arabian J. Chem., 13, 4629 (2020).
38. Ö. Kerkez-Kuyumcu, S. S. Bayazit and M. A. Salam, J. Ind. Eng.Chem., 36, 198 (2016).
39. H. Li, J. Hu, Y. Cao, X. Li and X. Wang, Bioresour. Technol., 246,168 (2017).
40. C. Yang, L. Wang, Y. Yu, P. Wu, F. Wang, S. Liu and X. Luo, Int. J.Biol. Macromol., 149, 93 (2020)