ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 10, 2023
Revised March 1, 2023
Accepted March 10, 2023
Acknowledgements
This work is dedicated to the memory of Prof. Jiří Jaromír Klemeš, who inspired and supported us in our researc
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Bioprospecting of biosurfactant-producing bacteria for hydrocarbon bioremediation: Optimization and characterization

1Biotechnology Laboratory, High National School of Biotechnology, Ali Mendjeli University City, BP E66 25100, Constantine, Algeria 2Department of Chemistry, Soongsil University, Seoul 06978, South Korea 3School of Engineering, Lebanese American University, Byblos, Lebanon 4Department of Chemical Engineering and Material Science, Yuan Ze University, Taiwan 5Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador 6Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India 7Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia 8Engineering Department, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jln Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia 9Sustainable Process Integration Laboratory (SPIL), NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology - VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic
vasseghian@ssu.ac.kr, m.berkani@ensbiotech.edu.dz
Korean Journal of Chemical Engineering, October 2023, 40(10), 2497-2512(16), 10.1007/s11814-023-1418-y
downloadDownload PDF

Abstract

Biosurfactants have been found capable of replacing synthetic surfactants which include ongoing bioprospecting of biosurfactant-producing bacteria as well as process optimization for maximum biosurfactant production. In this study, five morphologically distinct actinomycete strains isolated from hydrocarbon-polluted soil collected from an oil spill surface in Southeastern Algeria were tested for their ability to produce biosurfactants using preliminary biosurfactant screening assays. The 7SDS strain was selected as the most promising biosurfactant producer due to its greatest oil displacement diameter (7.83±0.15 cm), emulsification index (59.66±0.44%), and enhanced surface tension reduction (30.04±0.51 mN/m); it was identified as Streptomyces thinghirensis 7SDS using 16S rDNA sequence analysis. The 7SDS strain's biosurfactant production was optimized using the Face-centered central composite design (CCD) based on response surface methodology (RSM). To this end, five independent factors, i.e., residual frying oil, used engine oil, whey, CS filtrate, and incubation time, were assessed. The RSM's model predicted a surface tension of 27.48 mN/m using 2.44% (v/v) residual frying oil, 0.35% (v/v) used motor oil, 0.83% (v/v) whey, 0.39% (v/v) CS filtrate, and an incubation time of 219.3 h. The optimized medium produced 8.79 g/L of biosurfactant. The produced biosurfactant allows one to reduce the surface tension of distilled water from 70.86 mN/m to 27.96 mN/m at a critical micelle concentration of 350 mg/L, even over a wide range of pH (2.0-12.0), temperature (4-120 o C), and salinity (2-12%, W/V). Biochemical (Biuret, phenol-sulfuric acid, and phosphate tests) and compositional (FTIR and GC-MS) characterizations confirmed the phospholipid nature of the produced biosurfactant. Interestingly, the produced BS demonstrated significant antimicrobial activity as well as intriguing activity in removing hydrocarbons from polluted soil. Because of their appealing biological properties, strain 7SDS and its biosurfactant are attractive targets for a variety of applications such as biomedicine and environmental ones.

References

1. A. A. Jimoh and J. Lin, Ecotoxicol. Environ. Saf., 184, 109607 (2019).
2. V. M. Alvarez, D. Jurelevicius, J. M. Marques, P. M. de Souza, L. V.de Araújo, T. G. Barros, R. O. M. A. de Souza, D. M. G. Freire and L. Seldin, Colloids Surf. B., 136, 14 (2015).
3. E. Eras-Muñoz, A. Farré, A. Sánchez, X. Font and T. Gea, Bioengineered, 13, 12365 (2022).
4. M. I. Ja'afaru, T. Abbas, O. M. Ajunwa and K. Olaifa, Sci. Afr., 17,e01357 (2022).
5. Z. Wei, J. J. Wang, L. A. Gaston, J. Li, L. M. Fultz, R. D. DeLaune and S. K. Dodla, J. Hazard. Mater., 396, 122595 (2020).
6. C. C. Azubuike, C. B. Chikere and G. C. Okpokwasili, World J.Microbiol. Biotechnol., 32, 180 (2016).
7. A. Dzionek, D. Wojcieszyńska and U. Guzik, Electron. J. Biotechnol., 23, 28 (2016).
8. E. Kaczorek, A. Pacholak, A. Zdarta and W. Smułek, Colloid Interface Sci., 2, 35 (2018).
9. J. Araujo, J. Monteiro, D. Silva, A. Alencar, K. Silva, L. Coelho, W.Pacheco, D. Silva, M. Silva, L. Silva and A. Monteiro, Antibiotics, 11,1106 (2022).
10. T. R. Bjerk, P. Severino, S. Jain, C. Marques, A. M. Silva, T. Pashirova and E. B. Souto, Bioengineering, 8, 115 (2021).
11. V. K. Gaur, P. Gupta, V. Tripathi, R. S. Thakur, R. K. Regar, D. K.Patel and N. Manickam, Environ. Technol. Innov., 25, 102108 (2022).
12. N. Khondee, N. Ruamyat, E. Luepromchai, K. Sikhao and Y. Hawangchu, Biomass Bioenergy, 165, 106568 (2022).
13. V. K. Gaur, P. Sharma, R. Sirohi, S. Varjani, M. J. Taherzadeh, J.-S.Chang, H. Yong Ng, J. W. C. Wong and S.-H. Kim, Bioresour. Technol., 343, 126059 (2022).
14. T. Ingsel, F. M. de Souza and R. K. Gupta, Green sustainable process for chemical and environmental engineering and science, Inamuddin, Adetunji, C. O. and Ahamed, M. I., eds., Academic Press, 467 (2022).
15. S. Nalini, D. Inbakandan, T. Stalin Dhas and S. Sathiyamurthi,Results Chem., 3, 100223 (2021).
16. I. Talhi, L. Dehimat, A. Jaouani, R. Cherfia, M. Berkani, F. Almomani, Y. Vasseghian and N.K. Chaouche, Chemosphere, 286, 131479 (2022).
17. M.I. Ousaadi, F. Merouane, M. Berkani, F. Almomani, Y. Vasseghian and M. Kitouni, Environ. Res., 201, 111494 (2021).
18. M. Boulahbal, M.A. Malouki, M. Canle, Z. Redouane-Salah, S. Devanesan, M.S. AlSalhi and M.J. C. Berkani, Chemosphere, 306, 135516
(2022).
19. S. Chakraborty, M. Ghosh, S. Chakraborti, S. Jana, K. K. Sen, C.Kokare and L. Zhang, Int. J. Biol. Macromol., 79, 405 (2015).
20. K. Patowary, R. Patowary, M. C. Kalita and S. Deka, Front. Microbiol., 8 (2017).
21. S. Devanshi, K. R. Shah, S. Arora and S. Saxena, IntechOpen (2021).
22. A. Arifiyanto, T. Surtiningsih, Ni'matuzahroh, Fatimah, D. Agustina and N. H. Alami, Biocatal. Agric. Biotechnol., 24, 101513 (2020).
23. A. A. Bhatti, S. Haq and R. A. Bhat, Microb. Pathog., 111, 458 (2017).
24. R. Subramani and D. Sipkema, Mar. Drugs., 17, E249 (2019).
25. L. Donald, A. Pipite, R. Subramani, J. Owen, R. A. Keyzers and T.Taufa, Microbiol. Res., 13, 418 (2022).
26. R. Subramani and W. Aalbersberg, Microbiol. Res., 167, 571 (2012).
27. J. Pochon and P. Tardieux, Editions de la Tourelle., 11 (1962).
28. M. Hayakawa, T. Sadakata, T. Kajiura and H. Nonomura, J. Bioeng., 72(5), 320 (1991).
29. D. G. Cooper and B. G. Goldenberg, Appl. Environ. Microbiol., 53,224 (1987).
30. S. K. Satpute, B. D. Bhawsar, P. K. Dhakephalkar and B. A. Chopade, Indian J. Mar. Sci., 37, 243 (2008).
31. H. T. Yalçın, G. Ergin-Tepebaşı and E. Uyar, J. Basic Microbiol., 58,782 (2018).
32. P. L. du Noüy, J. Gen. Physiol., 1, 521 (1919).
33. M. S. Mechouche, F. Merouane, C. E. H. Messaad, N. Golzadeh, Y.Vasseghian and M. Berkani, Environ. Res., 204, 112360 (2022).
34. K. V. Deepika, S. Kalam, P. Ramu Sridhar, A. R. Podile and P. V.Bramhachari, Biocatal. Agric. Biotechnol., 5, 38 (2016).
35. A. Chebbi, D. Hentati, H. Zaghden, N. Baccar, F. Rezgui, M. Chalbi,S. Sayadi and M. Chamkha, Int. Biodeterior. Biodegrad., 122, 128 (2017).
36. D. Hentati, A. Chebbi, F. Hadrich, I. Frikha, F. Rabanal, S. Sayadi and M. Chamkha, Ecotoxicol. Environ. Saf., 167, 441 (2019).
37. A. Bianchi-Bosisio, Encyclopedia of analytical science (second edition), Worsfold, P., Townshend, A. and Poole, C., eds., Elsevier, Oxford, 357 (2005).
38. M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers and F. Smith,Anal. Chem., 28, 350 (1956).
39. T. Moeller, J. C. Bailar, J. Kleinberg, C. O. Guss, M. E. Castellion and C. Metz, Chemistry, Moeller, T., Bailar, J. C., Kleinberg, J., Guss, C. O.,Castellion, M. E. and Metz, C., eds., Academic Press, 659 (1980).
40. S. García-Reyes, G. Yáñez-Ocampo, A. Wong-Villarreal, R. K. Rajaretinam, C. Thavasimuthu, R. Patiño and M. L. Ortiz-Hernández,
Environ.Technol., 39, 2622 (2018).
41. S. Joy, P. K. S. M. Rahman and S. Sharma, Chem. Eng., 317, 232 (2017).
42. L. C. Goveas and S. P. Sajankila, Bioresour. Technol. Rep., 11, 100447 (2020).
43. D. Hentati, A. Chebbi, A. Mahmoudi, F. Hadrich, M. Cheffi, I. Frikha,S. Sayadi and M. Chamkha, Biochem. Eng., 166, 107861 (2021).
44. A. Fariq and A. Yasmin, Process Biochem., 98, 1 (2020).
45. A. Fariq, A. Yasmin and M. Jamil, Extremophiles, 23, 435 (2019).
46. I. Djinni, A. Defant, M. Kecha and I. Mancini, Antibiotics, 8, 172 (2019).
47. Y. Souagui, D. Tritsch, C. Grosdemange-Billiard and M. Kecha,Med. Mycol., 25, 108 (2015).
48. N. Sabaou, H. Boudjella, A. Bennadji, A. Mostefaoui, A. Zitoun, L.Lamari, H. Bennadji, G. Lefebvre and P. Germain, Secheresse (France), 9, 147 (1998).
49. Z. Pasternak, A. Al-Ashhab, J. Gatica, R. Gafny, S. Avraham, D.Minz, O. Gillor and E. Jurkevitch, PLOS ONE, 8, e69705 (2013).
50. G. Sarkar and K. Suthindhiran, Indian J. Microbiol., 62(4), 475 (2022).
51. A. R. Johnsen, A. Winding, U. Karlson and P. Roslev, Appl. Environ. Microbiol., 68, 6106 (2002).
52. F. P. Claverías, A. Undabarrena, M. González, M. Seeger and B.Cámara, Front. Microbiol., 6, 737 (2015).
53. M. Hayakawa and H. Nonomura, J. Ferment. Technol., 65, 501 (1987).
54. R. Subramani and W. Aalbersberg, Appl. Microbiol. Biotechnol., 97,9291 (2013).
55. L. Méndez-Lagunas, S. Siles-Alvarado, J. Rodríguez-Ramírez and L. A. Aquino-González, Int. J. Chem. Biomol. Sci., 1, 193 (2015).
56. Y. Sarafin, M. B. S. Donio, S. Velmurugan, M. Michaelbabu and T.Citarasu, Saudi J. Biol. Sci., 21, 511 (2014).
57. N. S. Zambry, A. Ayoib, N. A. Md Noh and A. R. M. Yahya, Bioprocess. Biosyst. Eng., 40, 1007 (2017).
58. N. S. Nayak, M. S. Purohit, D. R. Tipre and S. R. Dave, Biocatal.Agric. Biotechnol., 29, 101808 (2020).
59. H. Baoune, A. Ould El Hadj-Khelil, G. Pucci, P. Sineli, L. Loucif and M. A. Polti, Ecotoxicol. Environ. Saf., 147, 602 (2018).
60. F. Z. Ferradji, S. Mnif, A. Badis, S. Rebbani, D. Fodil, K. Eddouaouda and S. Sayadi, Int. Biodeterior. Biodegrad., 86, 300 (2014).
61. A. Khopade, B. Ren, X.-Y. Liu, K. Mahadik, L. Zhang and C.Kokare, J. Colloid Interface Sci., 367, 311 (2012).
62. M. Shavandi, G. Mohebali, A. Haddadi, H. Shakarami and A. Nuhi,Colloids Surf. B., 82, 477 (2011).
63. Y. Garnida, M. Rudiansyah, G. Yasin, T. Mahmudiono, A.J. Kadhim,S. Sharma, H. A. Hussein, R. A. Shichiyakh, W. K. Abdelbasset and
A. H. Iswanto, Food Sci. Technol., 42 (2022).
64. I. M. Banat, S. K. Satpute, S. S. Cameotra, R. Patil and N. V. Nyayanit,Front. Microbiol., 5, 697 (2014).
65. V. Kachrimanidou, D. Alimpoumpa, A. Papadaki, I. Lappa, K. Alexopoulos and N. Kopsahelis, Biomass Convers. Biorefin., 12(10), 4621 (2022).
66. A. Javee, R. Karuppan and N. Subramani, Biocatal. Agric. Biotechnol., 23, 101505 (2020).
67. M. A. Elkhawaga, Appl. Microbiol., 124, 691 (2018).
68. X. Yan, J. Sims, B. Wang and M. T. Hamann, Biochem. Syst. Ecol.,55, 292 (2014).
69. A. S. Korayem, A. A. Abdelhafez, M. M. Zaki and E. A. Saleh, Ann.Agric. Sci., 60, 209 (2015).
70. P. Manivasagan, P. Sivasankar, J. Venkatesan, K. Sivakumar and S.-K.Kim, Bioprocess. Biosyst. Eng., 37, 783 (2014).
71. I. Mnif, A. Bouallegue, S. Mekki and D. Ghribi, Bioprocess. Biosyst.Eng., 44, 2315 (2021).
72. A. R. Najafi, M. R. Rahimpour, A. H. Jahanmiri, R. Roostaazad, D.Arabian and Z. Ghobadi, Chem. Eng., 163, 188 (2010).
73. Y. Vasseghian, M. Moradi, M. Pirsaheb, A. Khataee, S. Rahimi,M. Y. Badi and A. Khaneghah, Food Res. Int., 137, 109557 (2020).
74. M. Berkani, Y. Kadmi, M. K. Bouchareb, M. Bouhelassa and A.Bouzaza, Arab. J. Chem., 13(11), 8338 (2020).
75. M. Berkani, M. Bouhelassa, A. Bouzaza, M. K. Bouchareb, Y. Kadmi and I. Soutrelle, ICheaP-12, 43, 961 (2015). Aidic Servizi Srl.
76. W. Alloun, M. Berkani, A. Benaissa, A. Shavandi, M. Gares, C.Danesh and N. K. Chaouche, Chemosphere, 326, 138394 (2023).
77. A. Smaali, M. Berkani, F. Merouane, Y. Vasseghian, N. Rahim and M. Kouachi, Chemosphere, 266, 129158 (2021).
78. Y. Vasseghian, A. Bahadori, A. Khataee, E.N. Dragoi and M. Moradi,ACS Omega, 5(1), 781 (2019).
79. M. Berkani, M. Bouhelassa and M. K. Bouchareb, Arab. J. Chem.,12(8), 3054 (2019).
80. M. K. Bouchareb, M. Berkani, S. Merouani and M. Bouhelassa,Water Sci. Technol., 82(7), 1393 (2020).
81. D. G. Almeida, R. d. C. F. Soares da Silva, J. M. Luna, R. D. Rufino,V. A. Santos and L. A. Sarubbo, Front. Microbiol., 8 (2017).
82. A. Dhasayan, J. Selvin and S. Kiran, 3 Biotech., 5, 443 (2015).
83. A. F. da Silva, I. M. Banat, A. J. Giachini and D. Robl, Bioprocess.Biosyst. Eng., 44, 2003 (2021).
84. S. Bhuyan-Pawar, R. P. Yeole, V. M. Sanam, S. P. Bashetti and S. S.Mujumdar, Int. J. Curr. Microbiol. App. Sci., 2, 343 (2015).
85. B. Kumari, S. N. Singh and D. P. Singh, Process Biochem., 47, 2463 (2012).
86. I. V. Nwaguma, C. B. Chikere and G. C. Okpokwasili, Bioresour. Bioprocess., 3, 40 (2016).
87. P. G. Carrillo, C. Mardaraz, S. I. Pitta-Alvarez and A. M. Giulietti,World J. Microbiol. Biotechnol., 12, 82 (1996).
88. D. W. Lee, H. Lee, B.-O. Kwon, J. S. Khim, U. H. Yim, B. S. Kim and J.-J. Kim, Environ. Pollut., 241, 254 (2018).
89. R. Tantipolphan, T. Rades, A. J. McQuillan and N. J. Medlicott, Int.J. Pharm., 337, 40 (2007).
90. H. Cui, J. Lu, C. Li and L. Lin, LWT, 144, 111262 (2021).
91. S. Nandhini and K. Ilango, Pharm. Res., 16, 103 (2021).
92. A. Kretschmer, H. Bock and F. Wagner, Appl. Environ. Microbiol.,44, 864 (1982).
93. G. Yagüe, M. Segovia and P. L. Valero-Guillén, Microbiology (Reading, Engl), 149, 1675 (2003).
94. S. N. R. L Silva, C. B. B. Farias, R. D. Rufino, J. M. Luna and L. A.Sarubbo, Colloids Surf. B: Biointerfaces, 79(1), 174 (2010).
95. G. Seghal Kiran, T. Anto Thomas, J. Selvin, B. Sabarathnam and A. P. Lipton, Bioresour. Technol., 101, 2389 (2010).
96. R. de Cássia F.S. Silva, D.G. Almeida, R.D. Rufino, J.M. Luna, V.A.Santos and L. A. Sarubbo, Int. J. Mol. Sci., 15, 12523 (2014)
97. H. Zhou, J. Chen, Z. Yang, B. Qin, Y. Li and X. Kong, Ann. Microbiol., 65, 2255 (2015).
98. L.-M. Whang, P.-W. G. Liu, C.-C. Ma and S.-S. Cheng, J. Hazard.Mater., 151, 155 (2008).
99. A. Kumar, S. Saini, V. Wray, M. Nimtz, A. Prakash and B. N. Johri,J. Basic Microbiol., 52, 670 (2012).
100. A. P. P. Santos, M. D. S. Silva, E. V. L. Costa, R. D. Rufino, V. A.Santos, C. S. Ramos, L. A. Sarubbo and A. L. F. Porto, Braz. J. Med.
Biol. Res., 51, e6657 (2017).
101. N. H. Hayder, S. Alaa and H. Abdulmalik, Rom. Biotechnol. Lett.,19(1), 8979 (2014).
102. M. Abouseoud, R. Maachi, A. Amrane, S. Boudergua and A. Nabi,Desalination, 223, 143 (2008).
103. I. A. Purwasena, D. I. Astuti, M. Syukron, M. Amaniyah and Y.Sugai, J. Pet. Sci. Eng., 183, 106383 (2019).
104. M. Goswami and S. Deka, Colloids Surf. B., 178, 285 (2019).
105. J. M. Campos, T. L. M. Stamford, L. A. Sarubbo, J. M. de Luna,R. D. Rufino and I. M. Banat, Biotechnol. Progr., 29, 1097 (2013).
106. S. Akbari, N. H. Abdurahman, R. M. Yunus, F. Fayaz and O. R.
Alara, Biotechnol. Res. Innovation., 2, 81 (2018).
107. E. F. Santos, M. F. S. Teixeira, A. Converti, A. L. F. Porto and L. A.
Sarubbo, Biocatal. Agric. Biotechnol., 17, 142 (2019).
108. D. Hentati, A. Chebbi, F. Hadrich, I. Frikha, F. Rabanal, S. Sayadi,A. Manresa and M. Chamkha, Ecotoxicol. Environ. Saf., 167, 441 (2019).
109. F. Carolin C, P. S. Kumar and P. T. Ngueagni, J. Hazard. Mater.,407, 124827 (2021).
110. I. Ivshina, L. Kostina, A. Krivoruchko, M. Kuyukina, T. Peshkur,P. Anderson and C. Cunningham, J. Hazard. Mater., 312, 8 (2016).
111. F. Peng, Z. Liu, L. Wang and Z. Shao, J. Appl. Microbiol., 102(6),1603 (2007).
112. G. S. Kiran, T. A. Thomas and J. Selvin, Colloids Surf. B., 78(1), 8 (2010).
113. S. A. Adu, P. J. Naughton, R. Marchant and I. M. Banat, Pharmaceutics, 12(11), 1099 (2020).
114. R. Gandhimathi, G. Seghal Kiran, T. A. Hema, J. Selvin, T. Rajeetha Raviji and S. Shanmughapriya, Bioprocess Biosyst. Eng., 32, 825 (2009).
115. V. A. I. Silveira, C. A. U. Q. Freitas and M. A. P. C. Celligoi, J. Appl. Biol. Biotechnol., 6(6), 87 (2018)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로