ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 4, 2022
Revised February 12, 2023
Accepted March 7, 2023
Acknowledgements
This work was financially supported by National Science and Technology Support Program of China (Grant no. 2015BAB19B02)
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Implication of hydrolysis on vanadium precipitation with acidic ammonium salt from high concentration of alkaline vanadium solution

State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Pangang Group Research Institute Co., Ltd., Panzhihua, Sichuan 617000, P. R. China
pyy20220512@163.com
Korean Journal of Chemical Engineering, October 2023, 40(10), 2513-2519(7), 10.1007/s11814-023-1415-1
downloadDownload PDF

Abstract

Vanadium precipitation with acidic ammonium salt is widely applied in industrial practice of vanadium pentoxide production. However, the ammonia wastewater produced in the precipitation process and resultant environmental issues have been paid increasing attention. With the intention of reducing wastewater and extra cost, an enhancement in the vanadium content of basic qualified solution is the most directly effective method. Unfortunately, high vanadium concentration brings about a low precipitation rate and a high Na content in ammonium polyvanadate, as a result of hydrolysis existence in the precipitation process. The effect of hydrolytic vanadium reaction on acidic ammonium salt precipitation has rarely been reported. Therefore, the whole precipitation process, including the effect of pH value, reaction temperature and vanadium concentration on precipitation result were clarified by analyzing the thermodynamic form of vanadate radicals in this work. Simultaneously, a study on technological parameters was inquired based on the theoretical analysis. The phase composition and crystal morphology of precipitates were also inspected using XRD and SEM-EDS. The results show the negative reaction of vanadium hydrolysis cannot be eliminated in the process of vanadium precipitation with acidic ammonia salt. When vanadium content is higher than 35 g/L, Na in APV is easy to exceed 0.6%. Na mainly precipitates in V2O5·H2O in the formation of amorphous body or chemical absorption. The results in this work provide a fundamental guide for the application of high concentration vanadium precipitation technology

References

1. B.X. Yang, J.Y. He, G.F. Zhang and J.K. Guo, Vanadium: Extraction Manufacturing and Applications, Elsevier, Amsterdam (2021).
2. B. Hu, C. D. Zhang, M. G. Yang, Q. Y. Liu, M. Y. Wang and X. W. Wang, Hydrometallurgy, 205, 105742 (2021).
3. Y. L. Ji, S. B. Shen, J. H. Liu and Y. Xue, J. Clean. Prod., 149, 1068 (2017).
4. R. R. Moskalyk and A. M. Alfantazi, Min. Eng., 16, 793 (2003).
5. J. C. Lee, Kurniawan, E. Y. Kim, K. W. Chung, R. Kim and H. S. Jeon, J. Mater. Res. Technol., 12, 343 (2021).
6. H. Y. Li, H. X. Fang, K. Wang, W. Zhou, Z. Yang, X. M. Yan, W. S. Ge, Q. W. Li and B. Xie, Hydrometallurgy, 156, 124 (2015).
7. J. Wen, T. Jiang, X. L. Zheng, J. P. Wang, J. Cao and M. Zhou, Sep. Purif. Technol., 230, 115881 (2020).
8. B. Pan, B. Liu, S. N. Wang, M. Wenzel, J. J. Weigand, M. Feng, H. Du and Y. Zhang, J. Clean. Prod., 263, 121357 (2020).
9. P. Xiong, Y. M. Zhang, S. X. Bao and J. Huang, Hydrometallurgy, 180, 113 (2018).
10. P. G. Ning, X. Lin, X. Y. Wang and H. B. Cao, Chem. Eng. J., 301, 132 (2016).
11. Q. Kang, Y. M. Zhang and S. X. Bao, Powder Technol., 355, 667 (2019).
12. G. B. Zhang, Y. M. Zhang and S. X. Bao, Minerals, 8(7), 294 (2018).
13. G. C. Du, Z. H. Sun, Y. Xian, H. Jing, H. J. Chen and D. F. Yin, J. Cryst. Growth, 441, 117 (2016).
14. X. W. Wang, D. X. Gao, B. F. Chen, Y. Q. Meng, Z. B. Fu and M. Y. Wang, Hydrometallurgy, 181, 1 (2018).
15. D. A. Fang, X. F. Zhang, M. G. Dong and X. X. Xue, J. Hazard. Mater., 336, 8 (2017).
16. Q. F. He, S. H. Si, J. C. Zhao, H. Y. Yan, B. Y. Sun, Q. H. Cai and Y. J. Yu, Saudi J. Biol. Sci., 25, 1664 (2016).
17. J. K. Guo, Iron Steel Vanadium Titanium, 38, 13 (2017).
18. X. W. Wang, H. G. Wang, D. X. Gao, B. F. Chen, Y. Q. Meng and M. Y. Wang, Hydrometallurgy, 177, 94 (2018).
19. N. V. Podval'naya and V. L. Volkov, Russ. J. Inorg. Chem., 51, 357 (2006).
20. L. L. Zhan, Y. Zhang, S. L. Zheng, Y. Zhang, B. Q. Fan, P. Li and Y. Zhang, J. Cryst. Growth, 526, 125218 (2019).
21. F. Sepehr and S. J. Paddison, Chem. Phys. Lett., 585, 53 (2013).
22. L. Chen, Chin. J. Rare Met., 34, 924 (2010).
23. L. Ma, Y. M. Zhang, T. Liu and J. Huang, Chin. J. Rare Met., 33, 936 (2009).
24. D. Liu, X. X. Xue and H. Yang, Iron Steel Vanadium Titanium, 40, 13 (2019).
25. L. H. Zhang, Y. M. Zhang, T. Liu, J. Huang, G. B. Zhang and Y. D. Yang, Nonferrous Met. (Extra. Metall.), 7, 53 (2018).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로