Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 20, 2023
Revised March 27, 2023
Accepted March 31, 2023
- Acknowledgements
- The authors acknowledge the support by NRF Korea (2021R1 F1A1047221) funded by the Ministry of Science and ICT, Korea. The synchrotron PXRD experiments were carried out at Beamline 2D of the Pohang Accelerator Laboratory (PAL).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Fluoride-incorporated ionic clathrate hydrates
Abstract
Ionic clathrate hydrates are promising materials for hydrate-based gas storage and separation processes.
Here, we demonstrated that the hydroxide ion in the cubic structure-II (CS-II) and hexagonal structure-III (HS-III)
ionic clathrate hydrates can be replaced by fluoride. Me4N+
and Et2Me2N+
cations were selected as guest species for the
CS-II and HS-III hydrates, respectively. The crystal structure of each hydrate was identified through Rietveld analysis of
the PXRD pattern. The Fd3m structure (CS-II) of Me4NF+N2 or O2 hydrates and the P6/mmm structure (HS-III) of
Et2Me2NF+CH4 hydrate were confirmed. We also investigated the phase equilibria of hydroxide or fluoride-incorporated CS-II and HS-III hydrate systems, and found that incorporating fluoride destabilizes the hydrate lattice to a
greater extent than hydroxide. The present findings will provide better understanding of the guest-host interactions in
ionic clathrate hydrates, and suggest their potential for practical applications in gas storage and separation technologies.
References
Wiley, Weinheim (2022).
2. G. A. Jeffrey, in Inclusion compounds, Vol. 1, J. L. Atwood, J. E. D. Davies and D. D. MacNicol Eds., Academic Press, London (1984).
3. D. W. Davidson and J. A. Ripmeester, in Inclusion compounds, Vol. 3, J. L. Atwood, J. E. D. Davies and D. D. MacNicol Eds., Academic Press, London (1984).
4. K. Koga, H. Tanaka and K. Nakanishi, Mol. Simul., 12, 241 (1994).
5. M. Cha, K. Shin and H. Lee, Korean J. Chem. Eng., 34, 2514 (2017).
6. H. Dureckova, T. K. Woo, S. Alavi and J. A. Ripmeester, Can. J. Chem., 93, 864 (2015).
7. H. Dureckova, T. K. Woo and S. Alavi, J. Chem. Phys., 144, 044501 (2016).
8. K. A. Udachin, S. Alavi and J. A. Ripmeester, J. Phys. Chem. C, 117, 14176 (2013).
9. S. U. Pickering, J. Chem. Soc. (London) Trans., 63, 141 (1893).
10. K. Shin, J.-H. Cha, Y. Seo and H. Lee, Chem. Asian. J., 5, 22 (2010).
11. H. Bode and G. Teufer, Acta Crystallogr., 8, 611 (1955).
12. D. W. Davidson and S. K. Garg, Can. J. Chem., 50, 3515 (1972).
13. D. W. Davidson, L. D. Calver, F. Lee and J. A. Ripmeester, Inorg. Chem., 20, 2013 (1981).
14. D. Mootz, E. J. Oellers and M. Wiebcke, J. Am. Chem. Soc., 109, 1200 (1987).
15. J.-H. Cha, K. Shin, S. Choi, S. Lee and H. Lee, J Phys. Chem. C, 112, 13332 (2008).
16. K. Shin, W. Lee, M. Cha, D.-Y. Koh, Y. N. Choi, H. Lee, B. S. Son, S. Lee and H. Lee, J. Phys. Chem. B, 115, 958 (2011).
17. K. Shin, M. Cha, W. Lee and H. Lee, Korean J. Chem. Eng., 33, 1728 (2016).
18. D. Mootz and R. Seidel, J. Incl. Phenom., 8, 139 (1990).
19. S. Choi, K. Shin and H. Lee, J. Phys. Chem. B., 111, 10224 (2007).
20. K. Shin, S. Choi, J.-H. Cha and H. Lee, J. Am. Chem. Soc., 130, 7180 (2008).
21. K. Shin, M. Cha, S. Choi, J. Dho and H. Lee, J. Am. Chem. Soc., 130, 17234 (2008).
22. M. Cha, K. Shin, M. Kwon, D.-Y. Koh, B. Sung and H. Lee, J. Am. Chem. Soc., 132, 3694 (2010).
23. K. Shin, M. Cha, H. Kim, Y. Jung, Y. S. Kang and H. Lee, Chem. Commun., 47, 674 (2011).
24. K. Shin, M. Cha, W. Lee, H. Kim, Y. Jung, J. Dho, J. Kim and H. Lee, J. Am. Chem. Soc., 133, 20399 (2011).
25. K. Shin, M. Cha, W. Lee, Y. Seo and H. Lee, J. Phys. Chem. C, 118, 15193 (2014).
26. Y.-H. Ahn, D. Lim, J. Min, J. Kim, B. Lee, J. W. Lee and K. Shin, Chem. Eng. J., 359, 1629 (2019).
27. D. L. Fowler, W. V. Loebenstein, D. B. Pall and C. A. Kraus, J. Am. Chem. Soc., 62, 1140 (1940).
28. W. Shimada, M. Shiro, H. Kondo, S. Takeya, H. Oyama, T. Ebinuma and H. Narita, Acta. Crystallogr. C, C61, 065 (2005).
29. K. Shin, Y. Kim, T. A. Strobel, P. S. R. Prasad, T. Sugahara, H. Lee, E. D. Sloan, A. K. Sum and C. A. Koh, J. Phys. Chem. A, 113, 6415 (2009).
30. J.-H. Cha, K. Shin, S. Choi and H. Lee, J. Phys. Chem. C, 112, 10573 (2008).
31. S. Muromachi, K. A. Udachin, K. Shin, S. Alavi, I. L. Moudrakovski, R. Ohmura and J.A. Ripmeester, Chem. Commun., 50, 11476 (2014).
32. B. Lee, K. Shin, S. Muromachi, I. L. Moudrakovski, C. I. Ratcliffe and J. A. Ripmeester, Chem. Eng. J., 418, 129304 (2021).
33. H. Hashimoto, T. Yamaguchi, H. Ozeki and S. Muromachi, Sci. Rep., 7, 17216 (2017).
34. H. Hashimoto, H. Ozeki, Y. Yamamoto and S. Muromachi, ACS Omega, 5, 7115 (2020).
35. T. Kobori, S. Muromachi, T. Yamasaki, S. Takeya, Y. Yamamoto, S. Alavi and R. Ohmura, Cryst. Growth Des., 15, 3862 (2015).
36. H. Nakayama and S. Torigata, Bull. Chem. Soc. Jpn., 57, 171 (1984).
37. K. Shin, I. L. Moudrakovski, M. D. Davari, S. Alavi, C. I. Ratcliffe and J. A. Ripmeester, CrystEngComm, 16, 7209 (2014).
38. K. Shin, I. L. Moudrakovski, C. I. Ratcliffe and J. A. Ripmeester, Angew. Chem. Int. Ed., 56, 6171 (2017).
39. B. Lee, J. Kim, K. Shin, K. H. Park, M. Cha, S. Alavi and J. A. Ripmeester, CrystEngComm, 23, 4708 (2021).
40. J. Kim, B. Lee, K. Shin, S.-P. Kang K. H. Park, M. Cha, S. Alavi and J. A. Ripmeester, Ind. Eng. Chem. Res., 60, 11267 (2021).
41. J. Kim, K. Shin, S. Alavi and J.A. Ripmeester, Energy Fuels, 36, 10504 (2022).
42. B. Lee, K. Shin, S. Alavi and J.A. Ripmeester, Energy Fuels, 36, 11123 (2022).
43. S. Zaromb and R. J. Brill, J. Chem. Phys., 24, 895 (1956).
44. L. C. Labowitz and E. F. Westrum, J. Phys. Chem., 65, 408 (1961).
45. C. G. van Beek, J. Overeem, J. R. Ruble and B. M. Craven, Can. J. Chem., 74, 943 (1996).
46. K. Shin, I. L. Moudrakovski, K. A. Udachin, C. I. Ratcliffe and J. A. Ripmeester, Can. J. Chem., 93, 850 (2015).
47. S. Takeya, K. A. Udachin, I. L. Moudrakovski, R. Susilo and J. A. Ripmeester, J. Am. Chem. Soc., 132, 524 (2010).
48. F. Favre-Nicolin and R. Cerny, J. Appl. Crystallogr., 35, 734 (2002);R. Cerny and F. Favre-Nicolin, Z. Kristallogr., 222, 105 (2007).
49. J. Rodríguez-Carvajal, Phys. B Condens. Matter, 192, 55 (1993).
50. K. Momma and F. Izumi, J. Appl. Crystallogr., 44, 1272 (2011).
51. R. D. Shannon, Acta Cryst., A32, 751 (1976).
52. F. J. Millero, Chem. Rev., 71, 147 (1971).
53. Y. Marcus, J. Phys. Chem. B, 113, 10285 (2009).
54. Y. Marcus, J. Chem. Phys., 137, 154501 (2012).
55. A. H. Mohammadi and D. Richon, Ind. End. Chem. Res., 49, 3976 (2010).
56. A. Van Cleeff and G.A.M. Diepen, Rec. Trav. Chim., 84, 1085 (1965).
57. A. Van Cleeff and G. A. M. Diepen, Rec. Trav. Chim., 79, 582 (1960).
58. A. H. Mohammadi, R. Anderson and B. Tohidi, AIChE J., 51, 2825 (2005).
59. K. A. Udachin, H. Lu, G. D. Enright, C. I. Ratcliffe, J. A. Ripmeester, N. R. Chapman, M. Riedle and G. Spence, Angew. Chem. Int. Ed., 46, 8220 (2007).
60. K.A. Udachin, C.I. Ratcliffe and J.A. Ripmeester, J. Supramol. Chem., 2, 405 (2002)