Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 28, 2023
Revised February 10, 2023
Accepted February 13, 2023
- Acknowledgements
- This research was supported by the 2021 BK21 FOUR Program of Pusan National University. This work was also supported by the Basic Science Research Capacity Enhancement Project through a Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education (2019R1 A6C1010016). The authors thank Prof. Songkil Kim for assisting with the SEM measurements with the support of the PNU Hybrid Innovative Manufacturing Engineering Center
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Facile synthesis of polynorbornene-based binder through ROMP for silicon anode in lithium-ion batteries
Abstract
Although binders are a minor component in battery electrodes, they can improve the electrochemical performance considerably, particularly in conversion-type electrodes, such as the silicon (Si) anode, which has volume
expansion problems. Although numerous binders are reported for Si anode, less attention has been paid to those prepared through controlled polymerization, which can allow the preparation of well-defined polymers. Herein, we report
the facile synthesis of carboxylic acid-functionalized polynorbornene (CA-PNB) via ring-opening metathesis polymerization (ROMP) and apply this as the binder for Si anode. Owing to the ultrafast polymerization kinetics of ROMP, a
high molecular weight polymer (~279 kDa) with narrow dispersity (Ð=1.07) was readily prepared within 30 min. The
resulting CA-PNB was used as the binder for a Si nanoparticle anode, which exhibits an initial coulombic efficiency of
81% and a specific capacity of 1,654 mAh g1
after 100 cycles at 0.5 A g1
. These values outperform the Si anodes prepared using conventional polyvinylidene difluoride and carboxymethyl cellulose binders, probably due to the abundant
carboxylic acid groups in the CA-PNB that offer stronger interactions with the Si surface. Since ROMP is a highly efficient polymerization tool to produce polymers with tailored architectures and controlled monomer sequences, this
method will be valuable for the rational molecular design of high-performance binders for battery electrodes.
References
2. Y. Jin, B. Zhu, Z. Lu, N. Liu and J. Zhu, Adv. Energy Mater., 7, 1700715 (2017).
3. A. Du, H. Li, X. Chen, Y. Han, Z. Zhu and C. Chu, ChemistrySelect, 7, e202201269 (2022).
4. M. Ashuri, Q. He and L. L. Shaw, Nanoscale, 8, 74 (2016).
5. Y. An, H. Fei, G. Zeng, L. Ci, S. Xiong, J. Feng and Y. Qian, ACS Nano, 12, 4993 (2018).
6. D. Vrankovic, M. Graczyk-Zajac, C. Kalcher, J. Rohrer, M. Becker, C. Stabler, G. Trykowski, K. Albe and R. Riedel, ACS Nano, 11, 11409 (2017).
7. Z. Liu, X. Chang, T. Wang, W. Li, H. Ju, X. Zheng, X. Wu, C. Wang, J. Zheng and X. Li, ACS Nano, 11, 6065 (2017).
8. M.-H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui and J. Cho, Nano Lett., 9, 3844 (2009).
9. Z. Gu, C. Liu, R. Fan, Z. Zhou, Y. Chen, Y. He, X. Xia, Z. Wang and H. Liu, Int. J. Hydrog. Energy, 43, 20843 (2018).
10. Y. Xu, Y. Zhu, F. Han, C. Luo and C. Wang, Adv. Energy Mater., 5, 1400753 (2015).
11. Z. Luo, Q. Xiao, G. Lei, Z. Li and C. Tang, Carbon, 98, 373 (2016).
12. H. Lee, A. N. Preman, T. N. Vo, J.-H. Lee, I. T. Kim and S.-k. Ahn, Int. J. Energy Res., 46, 12565 (2022).
13. Y. Lai, H. Li, Q. Yang, H. Li, Y. Liu, Y. Song, Y. Zhong, B. Zhong, Z. Wu and X. Guo, Ind. Eng. Chem. Res., 61, 6246 (2022).
14. P. Parikh, M. Sina, A. Banerjee, X. Wang, M. S. D’Souza, J.-M. Doux, E. A. Wu, O. Y. Trieu, Y. Gong, Q. Zhou, K. Snyder and Y. S. Meng,Chem. Mater., 31, 2535 (2019).
15. A. N. Preman, H. Lee, J. Yoo, I. T. Kim, T. Saito and S.-k. Ahn, J. Mater. Chem. A, 8, 25548 (2020).
16. C. Luo, L. Du, W. Wu, H. Xu, G. Zhang, S. Li, C. Wang, Z. Lu and Y. Deng, ACS Sustain. Chem. Eng., 6, 12621 (2018).
17. K. Lee, S. Lim and T.-H. Kim, Bull. Korean Chem. Soc., 39, 873 (2018).
18. D. Lee, H. Park, A. Goliaszewski, Y.-k. Byeun, T. Song and U. Paik, Ind. Eng. Chem. Res., 58, 8123 (2019).
19. M.-H. Ryou, J. Kim, I. Lee, S. Kim, Y. K. Jeong, S. Hong, J. H. Ryu, T.-S. Kim, J.-K. Park, H. Lee and J. W. Choi, Adv. Mater., 25, 1571 (2013).
20. A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C. F. Huebner, T. F. Fuller, I. Luzinov and G. Yushin, ACS Appl. Mater. Interfaces, 2, 3004 (2010).
21. G. Zhang, Y. Yang, Y. Chen, J. Huang, T. Zhang, H. Zeng, C. Wang, G. Liu and Y. Deng, Small, 14, 1801189 (2018).
22. Z. J. Han, N. Yabuuchi, S. Hashimoto, T. Sasaki and S. Komaba, ECS Electrochem. Lett., 2, A17 (2012).
23. M. T. Jeena, J.-I. Lee, S. H. Kim, C. Kim, J.-Y. Kim, S. Park and J.-H.Ryu, ACS Appl. Mater. Interfaces, 6, 18001 (2014).
24. Z. Liu, S. Han, C. Xu, Y. Luo, N. Peng, C. Qin, M. Zhou, W. Wang, L. Chen and S. Okada, RSC Adv., 6, 68371 (2016).
25. Z. Cao, X. Zheng, W. Huang, Y. Wang, Q. Qu and H. Zheng, J. Power Sources, 463, 228208 (2020).
26. H. Woo, K. Park, J. Kim, A. J. Yun, S. Nam and B. Park, Adv. Mater. Interfaces, 7, 1901475 (2020).
27. J.-K. Yoo, J. Jeon, K. Kang and Y. S. Jung, Electron. Mater. Lett., 13, 136 (2017).
28. X. Zhu, F. Zhang, L. Zhang, L. Zhang, Y. Song, T. Jiang, S. Sayed, C. Lu, X. Wang, J. Sun and Z. Liu, Adv. Funct. Mater., 28, 1705015 (2018).
29. L. Yue, L. Zhang and H. Zhong, J. Power Sources, 247, 327 (2014).
30. P.-F. Cao, G. Yang, B. Li, Y. Zhang, S. Zhao, S. Zhang, A. Erwin, Z. Zhang, A. P. Sokolov, J. Nanda and T. Saito, ACS Energy Lett., 4, 1171 (2019).
31. Z. Zheng, H. Gao, C. Ke, M. Li, Y. Cheng, D.-L. Peng, Q. Zhang and M.-S. Wang, ACS Appl. Mater. Interfaces, 13, 53818 (2021).
32. Y. Gu, S. Yang, G. Zhu, Y. Yuan, Q. Qu, Y. Wang and H. Zheng, Electrochim. Acta, 269, 405 (2018).
33. M. Ling, Y. Xu, H. Zhao, X. Gu, J. Qiu, S. Li, M. Wu, X. Song, C. Yan, G. Liu and S. Zhang, Nano Energy, 12, 178 (2015).
34. J. Son, T. N. Vo, S. Cho, A. N. Preman, I. T. Kim and S.-k. Ahn, J. Power Sources, 458, 228054 (2020).
35. P.-F. Cao, M. Naguib, Z. Du, E. Stacy, B. Li, T. Hong, K. Xing, D. N. Voylov, J. Li, D. L. Wood, III, A. P. Sokolov, J. Nanda and T. Saito, ACS Appl. Mater. Interfaces, 10, 3470 (2018).
36. J.-I. Lee, H. Kang, K. H. Park, M. Shin, D. Hong, H. J. Cho, N.-R. Kang, J. Lee, S. M. Lee, J.-Y. Kim, C. K. Kim, H. Park, N.-S. Choi, S. Park and C. Yang, Small, 12, 3119 (2016).
37. S. Jiang, B. Hu, Z. Shi, W. Chen, Z. Zhang and L. Zhang, Adv. Funct. Mater., 30, 1908558 (2019).
38. S. Cho, J. Son, I. Kim, H. Ahn, H.-S. Jang, S. H. Joo, K. H. Park, E. Lee, Y. Kim and S.-k. Ahn, Polymer, 175, 49 (2019).
39. L. Barner, T. P. Davis, M. H. Stenzel and C. Barner-Kowollik, Macromol. Rapid Commun., 28, 539 (2007).
40. N. Hadjichristidis, H. Iatrou, M. Pitsikalis and J. Mays, Prog. Polym. Sci., 31, 1068 (2006).
41. X. Guo, B. Choi, A. Feng and S. H. Thang, Macromol. Rapid Commun., 39, 1800479 (2018).
42. H. Wang, B. Wu, X. Wu, Q. Zhuang, T. Liu, Y. Pan, G. Shi, H. Yi, P. Xu, Z. Xiong, S.-L. Chou and B. Wang, Small, 18, 2101680 (2022).
43. J. A. Love, J. P. Morgan, T. M. Trnka and R. H. Grubbs, Angew. Chem. Int. Ed., 41, 4035 (2002).
44. D. J. Walsh, S. H. Lau, M. G. Hyatt and D. Guironnet, J. Am. Chem.Soc., 139, 13644 (2017).
45. Y. Pan, S. Ge, Z. Rashid, S. Gao, A. Erwin, V. Tsukruk, K.D. Vogiatzis, A. P. Sokolov, H. Yang and P.-F. Cao, ACS Appl. Energy Mater., 3,
3387 (2020).
46. S. C. Thickett and R. G. Gilbert, Polymer, 48, 6965 (2007).
47. A. Goto and T. Fukuda, Prog. Polym. Sci., 29, 329 (2004).
48. P. Deshmukh, H. Yoon, S. Cho, S. Y. Yoon, O. V. Zore, T. Kim, I. Chung, S.-K. Ahn and R. M. Kasi, J. Polymer Sci. Part A: Polym. Chem., 55, 3424 (2017).
49. J. Walkowiak, M. Gradzielski, S. Zauscher and M. Ballauff, Polymers, 13, 122 (2021).
50. J. J. Maurer, D. J. Eustace and C. T. Ratcliffe, Macromolecules, 20, 196 (1987).
51. P. Li, G. Chen, N. Zhang, R. Ma and X. Liu, Energy Environ. Mater., 4, 72 (2021).
52. A. Wang, S. Kadam, H. Li, S. Shi and Y. Qi, npj Comput. Mater., 4, 15 (2018).
53. A.L. Michan, M. Leskes and C.P. Grey, Chem. Mater., 28, 385 (2016).
54. X. Shan, Z. Cao, G. Zhu, Y. Wang, Q. Qu, G. Liu and H. Zheng, J. Mater. Chem. A, 7, 26029 (2019).
55. I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov and G. Yushin, Science, 334, 75 (2011).
56. C. Xu, F. Lindgren, B. Philippe, M. Gorgoi, F. Björefors, K. Edström and T. Gustafsson, Chem. Mater., 27, 2591 (2015).
57. T. Hou, G. Yang, N. N. Rajput, J. Self, S.-W. Park, J. Nanda and K. A. Persson, Nano Energy, 64, 103881 (2019).
58. X. Li, H. Chen, M. Chen, J. Qi, S. Chen and H. Zhuo, ACS Appl. Energy Mater., 4, 12709 (2021).
59. Z. H. Xie, M. Z. Rong and M. Q. Zhang, ACS Appl. Mater. Interfaces, 13, 28737 (2021)