Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 19, 2022
Revised January 29, 2023
Accepted February 3, 2023
- Acknowledgements
- The third author (Ahmed Kadhim Hussein) would like to express his deepest gratitude to Mrs. Topsy N. Smalley from the United States of America for her kind assistance.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Effect of thermal radiation and magnetic field on heat transfer of SWCNT/water nanofluid inside a partially heated hexagonal cavity
Abstract
The interaction between the magneto-hydrodynamic buoyant convection and the radiation in a partly
heated hexagonal enclosed space filled with SWCNTs/water nanoliquid was inspected in the current work for the first
time. The lowermost wall of the enclosed space was partially heated, while the other regions of this wall were presumed thermally insulated. The upper wall was considered insulated also. The four inclined walls of the enclosed space
were maintained at a constant cold temperature. A magnetic field with magnitude, Bo is enforced on the enclosed
space. The enclosed space was included inside it a concave hexagonal shaped body under three different conditions at
its boundary namely (cold, adiabatic and heated). The outcomes of the present work are obtained for diverse Hartmann number, Rayleigh number varied as 104
Ra106
, heated region length varied as 0.1LT0.4, various conditions
of the internal hexagonal body (cold, adiabatic and heated), solid volume fraction diverse as 00.04 and radiation
parameter varied as 0Rd1. In the present work, the standard Galerkin finite element method (SGFEM) is employed
to model the fluid flow and heat transfer. It is established that the Nusselt number along the heated bottom wall of the
hexagonal enclosed space (Nuout) rises as Rayleigh number rises. The same increasing is seen for the velocity distribution along vertically mean position. The stream function and Nuout decrease as the Hartmann number increases. The
stream function, temperature and velocity have the maximum profiles at the heated condition followed by the adiabatic one, while the cold condition has the minimum profile
References
2. A.S. Alshomrani, S. Sivasankaran, A.A. Amer and A. Biswas, Numer. Heat Transf.; A: Appl., 76, 87 (2019).
3. M. Elkhazen, W. Hassen, R. Gannoun, A. K. Hussein and M. Borjini, J. Eng. Phys. Thermophys., 92, 1318 (2019).
4. S. Hussain and A. K. Hussein, Int. Commun. Heat Mass Transf., 37, 1115 (2010).
5. A. M. Rashad, S. Sivasankaran, M. A. Mansour and M. Bhuvaneswari, Numer. Heat Transf.; A: Appl., 71, 1223 (2017).
6. S. Sivasankaran, M. A. Mansour, A. M. Rashad and M. Bhuvaneswari, Numer. Heat Transf. A, 70, 1356 (2016).
7. S. Ahmed, A. K. Hussein, M. Abd El-Aziz and S. Sivasankaran, Heat Transf. Res., 47, 383 (2016).
8. S. Sivasankaran, H. T. Cheong, M. Bhuvaneswari and P. Ganesan, Numer. Heat Transf. A, 69, 630 (2016).
9. R. Bindhu, G. Sai SundaraKrishnan, S. Sivasankaran and M. Bhuvaneswari, Energy Environ., 30, 833 (2019).
10. S. Ahmed, A. K. Hussein, H. Mohammed, I. Adegun, X. Zhang, L. Kolsi, A. Hasanpour and S. Sivasankaran, Nucl. Eng. Des., 266, 34 (2014).
11. A. K. Hussein, H. Ashorynejad, S. Sivasankaran, L. Kolsi, M. Shikholeslami and I. Adegun, Alex. Eng. J., 55, 203 (2016).
12. S. Sivasankaran and K. Narrein, IJST-T Mech Eng., 44, 373 (2020).
13. R. Chand, G. Rana and A. K. Hussein, J. Appl. Fluid Mech., 8, 265 (2015).
14. R. Mashayekhi, E. Khodabandeh, O. Akbari, D. Toghraie, M. Bahiraei and M. Gholami, J. Therm. Anal. Calorim., 134, 2305 (2018).
15. M. Bayat, M. Faridzadeh and D. Toghraie, Therm. Sci. Eng. Prog., 5, 50 (2018).
16. A. Kareem, H. Mohammed, A. K. Hussein and S. Gao, Int. Commun. Heat Mass Transf., 77, 195 (2016).
17. A. Al-Rashed, K. Kalidasan, L. Kolsi, R. Velkennedy, A. Aydi, A. K. Hussein and E. Malekshah, Int. J. Mech. Sci., 135, 362 (2018).
18. M. Esfe, M. Akbari, D. Toghraie, A. Karimipour and M. Afrand, Heat Transf. Res., 45, 409 (2014).
19. H. Bazdar, D. Toghraie, F. Pourfattah, O. Akbari, H. Nguyen and A. Asadi, J. Therm. Anal. Calorim., 139, 2365 (2020).
20. H. Arasteh, R. Mashayekhi, M. Goodarzi, S. Motaharpour, M. Dahari and D. Toghraie, J. Therm. Anal. Calorim., 138, 1461 (2019).
21. B. Ruhani, P. Barnoon and D. Toghraie, Phys. A, 525, 616 (2019).
22. M. Kamel, F. Lezsovits and A. K. Hussein, J. Therm. Anal. Calorim., 138, 4019 (2019).
23. M. Ali, M. Alim and S. Ahmed, Procedia Eng., 194, 479 (2017).
24. R. Vignesh Kumar and P. Devan, Proceedings of IHMTC2019-HTE-779 (2019).
25. L. Kolsi, A. K. Hussein, M. Borjini, H. Mohammed and H. Ben Aïssia, Arab J. Sci. Eng., 39, 7483 (2014).
26. S. Hussain and A. K. Hussein, J. Heat Trans. - T ASME, 136, 082502 (2014).
27. A. K. Hussein and S. Hussain, Alex. Eng. J., 55, 169 (2016).
28. A. K. Hussein and A. Mustafa, Therm. Sci. Eng. Prog., 1, 66 (2017).
29. A. K. Hussein and A. Mustafa, Heat Transf. - Asian Res., 47, 320 (2018).
30. E. Sourtiji and S. Hosseinizadeh, Therm. Sci., 16, 489 (2012).
31. M. Sheikholeslami, M. Gorji-Bandpy and D. Ganji, Energy, 60, 501 (2013).
32. M. Sheikholeslami, D. Ganji, M. Gorji-Bandpy and S. Soleimani, J. Taiwan Inst. Chem. Eng., 45, 795 (2014).
33. A. Al-Zamily, Comput. Fluids, 103, 71 (2014).
34. H. Elshehabey, F. Hady, S. Ahmed and R. Mohamed, Int. Commun. Heat Mass Transf., 57, 228 (2014).
35. A. K. Hussein, M. Bakier, M. Ben Hamida and S. Sivasankaran, Alex. Eng. J., 55, 2157 (2016).
36. M. Ali, M. Alim, R. Akhter and S. Ahmed, Int. J. Appl. Comput. Math., 3, 1047 (2017).
37. A. Yadollahi, A. Khalesidoost, A. Kasaeipoor, M. Hatami and D. Jing, Eur. Phys. J. Plus, 132, 372 (2017).
38. A. Dogonchi, F. Selimefendigil and D. D. Ganji, Int. J. Numer.Method Heat Fluid Flow, 29, 1663 (2019).
39. A. Purusothaman and E. Malekshah, Therm. Sci. Eng. Prog., 10, 186 (2019).
40. S. M. Seyyedi, A. S. Dogonchi, M. Hashemi-Tilehnoee, D. D. Ganji and A. J. Chamkha, Int. J. Numer. Method Heat Fluid Flow, 30(11), 4811 (2020).
41. M. Sheikholeslami, M. Gorji-Bandpy, D. D. Ganji and S. Soleimani, Adv. Powder Technol., 24, 980 (2013).
42. R. Ul-Haq and S. Aman, Int. J. Heat Mass Transf., 128, 401 (2019).
43. M. Sheikholeslami, M. Gorji-Bandpy and K. Vajravelu, Int. J. Heat Mass Transf., 80, 16 (2015).
44. A. K. Hussein, H. Ashorynejad, M. Sheikholeslami and S. Sivasankaran, Nucl. Eng. Des., 268, 10 (2014).
45. K. Narrein, S. Sivasankaran and P. Ganesan, Numer. Heat Transf. A, 69, 921 (2016).
46. Z. Li, A. K. Hussein, O. Younis, S. Rostami and W. He, Int. Commun. Heat Mass Transf., 112, 104497 (2020).
47. M. Sheremet, I. Pop and A. Rosca, Int. J. Numer. Method Heat Fluid Flow, 28, 1738 (2018).
48. A. Mostafazadeh, D. Toghraie, R. Mashayekhi and O. Akbari, J. Therm. Anal. Calorim., 138, 779 (2019).
49. M. Sheikholeslami, D.D. Ganji and M. Rashidi, J. Taiwan Inst. Chem. Eng., 47, 6 (2015).
50. Z. Li, A. K. Hussein, O. Younis, M. Afrand and S. Feng, Int. Commun. Heat Mass Transf., 116, 104650 (2020).
51. S. Yan, M. Fazilati, N. Samani, H. Ghasemi, D. Toghraie, Q. Nguyen and A. Karimipour, J. Energy Storage, 30, 101445 (2020).
52. A. Moraveji and D. Toghraie, Int. J. Heat Mass Transf., 113, 432 (2017).