ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 28, 2022
Revised February 16, 2023
Accepted March 14, 2023
Acknowledgements
This research was supported by the National Research Foundation (Grant No. NRF-2022R1A2C1013016) and by the Ministry of SMEs and Startups operated by the Korea Technology and Information Promotion Agency for SMEs (Grant No. S3271298), and funded and conducted under the Competency Development Program for Industry Specialists of the Korean Ministry of Trade, Industry and Energy (MOTIE), operated by Korea Institute for Advancement of Technology (KIAT, Grant No. P0012453, Next-generation Display Expert Training
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Organic co-agents for maintaining mechanical properties of rubber elastomers at high processing temperatures

School of Chemical Engineering and Materials Science, Department of Intelligent Energy and Industry, Chung-Ang University, Seoul 06974, Republic of Korea
jpark@cau.ac.kr
Korean Journal of Chemical Engineering, October 2023, 40(10), 2565-2571(7), 10.1007/s11814-023-1451-x
downloadDownload PDF

Abstract

Heat easily degrades a common organic co-agent with a ring structure based on C-N and C-C bonds that is frequently used in conjunction with peroxide-based initiators to cross-link polymer main chains, leading to the shattering of cross-linking points and deterioration of the physical properties of rubbers. In our study, we used co-agents based on phenyl rings that had better bond strengths to improve the heat resistance of co-agents in an effort to maintain the mechanical qualities of rubber at high temperatures. Our results show that the mechanical properties of crosslinked rubbers were considerably maintained after heat treatment at a high temperature. Through extensive investigation, it was discovered that utilizing co-agents with stronger bond strengths caused to reduce the disintegration of the crosslinking sites, which was the basis for retaining mechanical qualities

References

1.S. Atkinson, Sealing Technol., 2018, 5 (2018).
2. S. Son, J. An, J. Choi, S. Kim, J. Park, C. B. Park and J.H. Lee, Korean J. Chem. Eng., 38, 2567 (2021).
3. M. Gulcur and K. Beekmann, IEEE Int. Symp. Semicond. Manuf. Conf. Proc. 1-4 (2016).
4. T. Thenepalli, A. Y. Jun, C. Han, C. Ramakrishna and J. W. Ahn, Korean J. Chem. Eng., 32, 1009 (2015).
5. Y. C. Ko and G. Park, Korean J. Chem. Eng., 24, 975 (2007).
6. M. Akiba and A. S. Hashim, Prog. Polym. Sci., 22, 475 (1997).
7. A. S. Aprem, K. Joseph and S. Thomas, Rubber Chem. Technol., 78, 458 (2005).
8. L. González, A. Rodríguez, A. Marcos and C. Chamorro, Rubber Chem. Technol., 69, 203 (1996).
9. L. D. Loan, Rubber Chem. Technol., 40(1), 149 (1967).
10. J. Kruželák, R. Sýkora and I. Hudec, Rubber Chem. Technol., 90, 60 (2017).
11. N. Vennemann, K. Bökamp and D. Bröker, Macromol. Symp., 245-246, 641 (2006).
12. J. K. Mishra, Y. Chang and W. Kim, Polym. Bull., 66, 673 (2011).
13. S. K. Henning and R. Costin, 167th Technical Meeting of the Rubber Division, American Chemical Society, 16-18 (2005).
14. R. C. Keller, Rubber Chem. Technol., 61, 238 (1988).
15. P. R. Dluzneski, Rubber Chem. Technol., 74, 451 (2001).
16. H. A. Khonakdar, J. Morshedian, M. Mehrabzadeh, U. Wagenknecht and S. H. Jafari, Eur. Polym. J., 39, 1729 (2003).
17. W. Yang, J. Guan, W. Cui, S. Ye and J. Shen, Eur. Polym. J., 33, 761 (1997).
18. L. Ghasemi and J. Morshedian, Iranian Polym. J. (English Edition),12, 119 (2003).
19. F. Ruch, M. O. David and M. F. Vallat, J. Polym. Sci. B Polym. Phys.,38, 3189 (2000).
20. A. Taguet, B. B. Ameduri and B. B. Boutevin, Crosslinking Mater.Sci., 184, 127 (2005).
21. A. Simon, Constitutive Models for Rubber XII, CRC Press, Boca Raton (2022).
22. S. K. Henning and W. M. Boye, Rubber World, 240, 31 (2009).
23. R. Gauler and N. Risch, Eur. J. Org. Chem., 1998, 1193 (1998).
24. N. A. Neuburger and B. E. Eichinger, Macromolecules, 21, 3060 (1988).
25. Z. Hrnjak-Murgić, J. Jelenĉić and M. Bravar, Die Angew. Makromol. Chem., 242, 85 (1996).
26. F. Zhao, W. Bi and S. Zhao, J. Macromol. Sci. Phys., 50, 1460 (2011).
27. N. Rattanasom, S. Prasertsri and K. Suchiva, J. Appl. Polym. Sci.,113, 3985 (2009).
28. G. Glockler, J. Chem. Phys., 19, 124 (1951).
29. K. Exner and P. v. R. Schleyer, J. Phys. Chem. A, Mol., Spectrosc.,Kinet., Environ., & Gen. Theory, 105, 3407 (2001).
30. C. M. Kok and V. H. Yee, Eur. Polym. J., 22, 341 (1986).
31. K. Kim, S. Lee and N. Han, Korean J. Chem. Eng., 11, 41 (1994)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로