ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 28, 2023
Revised May 15, 2023
Accepted May 22, 2023
Acknowledgements
This research was supported by the Research Project for “Carbon Upcycling Project for Platform Chemicals” of the National Research Foundation (NRF) funded by the Ministry of Science and ICT (Grant number: 2022M3J3A104602111).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

CFD modeling of a multichannel Fischer-Tropsch reactor module with microscale cooling channels: Effects of mirrored structure cooling layers

1Department of Energy Systems Research, Ajou University, Suwon 16499, Korea 2Department of Chemical Engineering, Ajou University, Suwon 16499, Korea 3C1 Gas & Carbon Convergent Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea
mjpark@ajou.ac.kr
Korean Journal of Chemical Engineering, October 2023, 40(10), 2572-2580(9), 10.1007/s11814-023-1497-9
downloadDownload PDF

Abstract

Computational fluid dynamics (CFD) modeling of a multichannel Fischer-Tropsch reactor with microscale cooling channels is addressed in this study, wherein detailed mass, momentum, and energy balances were solved to retrieve detailed distributions of the conversion and temperature of both catalytic and cooling layers. A comparison between experimental data and simulation results showed relative errors of 6.73% and 1.22% for conversion and C5+ selectivity, respectively, which proves the validity of the proposed model. The novel structure of the reactor composed of mirrored structure cooling layers is suggested to prevent the thermal instability of a large-scale reactor module. The simulation showed that the symmetric distribution of the dense cooling channel area in the early part of the reactor decreased peak temperatures (Tmax=28.6 o C), whereas the nonmirrored case resulted in hot spots caused by the limited heat transfer capacity (Tmax=39.2 o C). The effects of the feed/coolant temperature, space velocity, and pressure were evaluated, and high temperatures and pressures resulted in a steep temperature increase in the early part of the reactor, whereas the high space velocity showed an increase in the area of peak temperature. Further, the analysis showed trade-offs of operating conditions between the conversion and selectivity of desired products.

References

1. M. E. Dry, Catal. Today, 71, 227 (2002).
2. C. Song, Catal. Today, 115, 2 (2006).
3. T. K. Das, W. A. Conner, J. Li, G. Jacobs, M. E. Dry and B. H. Davis,Energy Fuels, 19, 1430 (2005).
4. W. Ma, G. Jacobs, D. E. Sparks, R. L. Spicer, B. H. Davis, J. L. S. Klettlinger and C. H. Yen, Catal. Today, 228, 158 (2014).
5. R. Zennaro, M. Tagliabue and C. H. Bartholomew, Catal. Today, 58, 309 (2000).
6. I. C. Yates and C. N. Satterfield, Energy Fuels, 5, 168 (1991).
7. K. Keyvanloo, S. J. Lanham and W. C. Hecker, Catal. Today, 270, 9 (2016).
8. Y. Sun, G. Yang, L. Zhang and Z. Sun, Chem. Eng. Process., 119, 44 (2017).
9. N. Moazami, M.L. Wyszynski, K. Rahbar, A. Tsolakis and H. Mahmoudi, Chem. Eng. Sci., 171, 32 (2017).
10. M. Ostadi, E. Rytter and M. Hillestad, Chem. Eng. Res. Des., 114, 236 (2016).
11. L. Fratalocchi, C. G. Visconti, G. Groppi, L. Lietti and E. Tronconi, Chem. Eng. J., 349, 829 (2018).
12. S. R. Deshmukh, A. L. Y. Tonkovich, K. T. Jarosch, L. Schrader, S. P. Fitzgerald, D. R. Kilanowski, J. J. Lerou and T. J. Mazanec, Ind. Eng.
Chem. Res., 49, 10883 (2010).
13. D.-Y. Shin, K.-S. Ha, M.-J. Park, G. Kwak, Y.-J. Lee and K.-W. Jun,Fuel, 158, 826 (2015).
14. G. Arzamendi, P. M. Diéguez, M. Montes, J. A. Odriozola, E. Falabella Sousa-Aguiar and L.M. Gandía, Chem. Eng. J., 160, 915 (2010).
15. M.-S. Shin, N. Park, M.-J. Park, J.-Y. Cheon, J. K. Kang, K.-W. Jun and K.-S. Ha, Fuel Process. Technol., 118, 235 (2014).
16. J.-S. Park, D.-E. Kim, Y.-J. Lee, G. Kwak, K.-W. Jun and M.-J. Park, Ind. Eng. Chem. Res., 55, 9416 (2016).
17. K. S. Kshetrimayum, I. Jung, J. Na, S. Park, Y. Lee, S. Park, C.-J. Lee and C. Han, Ind. Eng. Chem. Res., 55, 543 (2016).
18. S. Saeidi, M. K. Nikoo, A. Mirvakili, S. Bahrani, N. A. S. Amin and M. R. Rahimpour, Rev. Chem. Eng., 31, 209 (2015).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로