Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 30, 2023
Revised May 28, 2023
Accepted June 29, 2023
- Acknowledgements
- This study was conducted with the support of the Kyungpook National University and Research Insititute of Industrial Science and Technology (RIST) individual project
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Determining adsorbent performance degradation in pressure swing adsorption using a deep learning algorithm and one-dimensional simulator
Abstract
This study proposes a methodology for diagnosing the degree of performance degradation of the adsorbent in pressure swing adsorption (PSA) plants using a one-dimensional simulator and a time-series deep learningalgorithm. First, a 1D PSA simulator was developed using mathematical models and validated with previously published experimental data. The behavior change of the PSA plant according to the performance degradation was trainedusing a deep learning algorithm based on the developed simulator. The model combines the 1D convolutional neuralnetwork and long-short-term memory (LSTM) network. The prediction of the degradation degree of the internaladsorbent was then presented using a pretrained neural network. The developed methodology demonstrates a meansquared error lower than 106 when predicting the degree of adsorbent degradation from the adsorption-bed-temperature time-series profiles with an example. The methodology can be used to predictive maintenance strategy by identifying PSA performance degradation in real time without stopping operation
References
2. D. W. Siderius, V. K. Shen, R. D., III Johnson and R. D. van Zee, NIST/ARPA-E Database of Novel and Emerging Adsorbent Materials, NIST Standard Reference Database Number 205; National
Institute of Standards and Technology: Gaithersburg, MD, http://adsorbents.nist.gov (retrieved July 07, 2023).
3. C. W. Wu and S. Sircar, Adsorption, 25, 669 (2019).
4. M. Luberti and H. Ahn, Int. J. Hydrogen Energy, 47(20), 10911 (2022).
5. A. D. Wiheeb, Z. Helwani, J. Kim and M. R. Othman, Sep. Purif.Rev., 45(2), 108 (2016).
6. M. D. Sees, T. Kirkes and C. C. Chen, Comput. Chem. Eng., 147,107235 (2021).
7. M. A. Makarem, M. Mofarahi, B. Jafarian and C. H. Lee, Comput.Chem. Eng., 121, 483 (2019).
8. J. Uebbing, L.T. Biegler, L. Rihko-Struckmann, S. Sager and K. Sundmacher, Comput. Chem. Eng., 151, 107340 (2021).
9. R. Rajasree and A. S. Moharir, Comput. Chem. Eng., 24(11), 2493 (2000).
10. A. Streb and M. Mazzotti, Comput. Chem. Eng., 166, 107974 (2022).
11. F. G. Wiessner, Gas Sep. Purif., 2(3), 115 (1988).
12. C. J. Heard, L. Grajciar, F. Uhlík, M. Shamzhy, M. Opanasenko, J.Čejka and P. Nachtigall, Adv. Mater., 32(44), 2003264 (2020).
13. R. Razzaq, C. Li and S. Zhang, Fuel, 113, 287 (2013).
14. H. Ahn, J. Yang and C. H. Lee, Adsorption, 7, 339 (2001).
15. K. O. Iwuozor, J. O. Ighalo, E. C. Emenike, L. A. Ogunfowora and C. A. Igwegbe, Curr. Res. Green Sust. Chem., 4, 100179 (2021).
16. S. Kulkarni and J. Kaware, Int. J. Innov. Sci. Eng. Technol., 1(8), 61 (2014).
17. J.G. Jee, M.B. Kim and C.H. Lee, Chem. Eng. Sci., 60(3), 869 (2005).
18. C. H. Lee, J. Yang and H. Ahn, AIChE J., 45(3), 535 (1999).
19. J.P. Mota and A.J. Rodrigo, Ind. Eng. Chem. Res., 39(7), 2459 (2000).
20. J. H. Yun, D. K. Choi and H. Moon, Chem. Eng. Sci., 55(23), 5857 (2000).
21. M. B. Kim, J. H. Moon, C. H. Lee, H. Ahn and W. Cho, Korean J.Chem. Eng., 21, 703 (2004).
20. I. F. Macdonald, M. S. El-Sayed, K. Mow and F. A. L. Dullien, Ind.Eng. Chem. Fundam., 18(3), 199 (1979).
21. N. S. Raghavan, M. M. Hassan and D. M. Ruthven, Chem. Eng.Sci., 41(11), 2787 (1986).
22. C. T. Choi and H. Wen-Chung, Chem. Eng. Sci., 49(1), 75 (1994).
23. L. Guo, W. A. Jury, R. J. Wagenet and M. Flury, J. Contam. Hydrol.,43(1), 45 (2000).
24. T. Paszko and M. Jankowska, Ecotox. Environ. Safe., 161, 584 (2018).
25. G. Van Rossum and F. L. Drake, Python 3 reference manual, Scotts Valley, CA: CreateSpace (2009).
26. H. Ahn, C. Chun, M. Park, I. S. Ahn and C. H. Lee, Sep. Sci. Technol., 36(10), 2121 (2001).27. S. Ahn, Y. W. You, D. G. Lee, K. H. Kim, M. Oh and C. H. Lee,Chem. Eng. Sci., 68(1), 413 (2012).
28. L. Barelli, G. Bidini, F. Gallorini and S. Servili, Energy, 33(4), 554 (2008).
29. L. Riboldi and O. Bolland, Energy Procedia, 114, 2390 (2017).
30. ISO/TC 197 (2019). Hydrogen Technologies. ISO 14687 Hydrogen Fuel—Product Specification—Part 2: Proton Exchange Membrane (PEM) Fuel Cell Applications for Road Vehicles. Available online:https://www.iso.org/obp/ui/fr/#iso:std:iso.14687-1:v1:en (retrieved July 07, 2023).
31. S. Zhang, T. Zhang and Y. Liu, International Conference on Industrial Engineering and Engineering Management (IEEM), 1029 (2021).
32. S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj and D. J. Inman, Mech. Syst. Signal Proc., 151, 107398 (2021).
33. Y. Yu, X. Si, C. Hu and J. Zhang, Neural Comput., 31(7), 1235 (2019).
34. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai and S. Chintala, Adv. Neural Inf. Process. Syst., 32, 8024 (2019).