ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 26, 2023
Revised May 13, 2023
Accepted May 24, 2023
Acknowledgements
This research was supported by the Korea Evaluation Institute of Industrial Technology [Grant number 20015430].
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Removal of carbon residue precursor in waste plastic pyrolysis oil via oxidation

1Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea 2Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan-si, 31056, Korea 3Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea ****Process R&D Center, Hanwha Solutions R&D Institute, Daejeon 34128, Korea 4Process R&D Center, Hanwha Solutions R&D Institute, Daejeon 34128, Korea 5KAIST Institute for the Nanocentury, KAIST, Daejeon 34141, Korea (Received 26 January 2023 • Revised 13 May 2023 • Accepted 24 May 2023)
jpark@kitech.re.kr, sqchoi@kaist.ac.kr
Korean Journal of Chemical Engineering, November 2023, 40(11), 2624-2631(8), 10.1007/s11814-023-1500-5
downloadDownload PDF

Abstract

A novel method to remove the carbon residue precursor from waste plastic pyrolysis oil has been developed to improve subsequent pyrolysis oil refining efficiency by reducing fouling. The carbon residue content of thepyrolysis oil that cannot be filtered is reduced by precipitating the carbon residue precursor from the pyrolysis oil undermild conditions. By emulsifying an aqueous solution of oxidant and the pyrolysis oil, the carbon residue precursor wasoxidized at the oil-water interface without oxidizing the pyrolysis oil. Enhancing intermolecular interaction by hydrophilic  functional groups formed by oxidation induces the precipitation of carbon residue precursors. The precursorremoval was determined by the type and reaction time of oxidants. FeCl3 and H2O2 are efficient oxidants, and recycling those oxidant solutions can also remove the carbon residue precursor. The number of recycles with the precursorremoval effect was determined by the amount of oxidant remaining in the aqueous solution. Also, a short 15-minuteFeCl3 reaction can eliminate the precursor. Reducing the reaction time is expected to increase process efficiency, asunnecessary oxidation and energy consumption are decreased. Our research suggests the pretreatment of the pyrolysisoil to reduce the carbon residue content, thereby reducing the fouling during the subsequent pyrolysis oil refining.

References

1. J.-P. Lange, Green Chem., 4, 546 (2002).
2. J.-P. Lange, ACS Sustain. Chem. Eng., 9, 15722 (2021).
3. K. Ragaert, L. Delva and K. Van Geem, Waste Manage., 69, 24 (2017).
4. A. Rahimi and J. Garciá, Nat. Rev. Chem., 1, 0046 (2017).
5. C. Sun, Y. Jiang, Z. Zhang, S. Zhao and L. Guo, Macromol. Res.,29, 543 (2021).
6. Z. Wei, Y. Wang, X. Fu, L. Jiang, Y. Wang, A. Yuan, H. Xu and J.Lei, Macromol. Res., 29, 562 (2021).
7. L. Wang, S. Yan, L. Zhang, Y. Mai, W. Li and H. Pang, Macromol.Res., 29, 462 (2021).
8. S. Jung and I. Ro, Korean J. Chem. Eng., 40, 693 (2023).
9. J. Lai, Y. Meng, Y. Yan, E. Lester, T. Wu and C. H. Pang, Korean J.Chem. Eng., 38, 2235 (2021).
10. H. Almohamadi, M. Alamoudi, U. Ahmed, R. Shamsuddin and K. Smith, Korean J. Chem. Eng., 38, 2208 (2021).
11. J. Esteban, F. J. Colomer, M. Carlos and A. Gallardo, Project Manage. Eng., 1, 131 (2015).
12. Y. Xue, S. Zhou, R. C. Brown, A. Kelkar and X. Bai, Fuel, 156, 40 (2015).
13. Z. J. Low, J. C. Wong, K. H. Ngoi, C. H. Chia, H.-J. Kim, H.-C. Kim and M. Ree, Macromol. Res., 29, 230 (2021).
14. S. Belbessai, A. Azara and N. Abatzoglou, Processes, 10, 733 (2022).
15. M. Kusenberg, A. Eschenbacher, M. R. Djokic, A. Zayoud, K. Ragaert, S. De Meester and K. M. Van Geem, Waste Manage., 138, 83 (2022).
16. M. Kusenberg, M. Roosen, A. Zayoud, M. R. Djokic, H. Dao Thi,S. De Meester, K. Ragaert, U. Kresovic and K. M. Van Geem, Waste Manage., 141, 104 (2022).
17. A. De Lucas, P. Canizares, A. Durán and A. Carrero, Appl. Catal.A: Gen., 154, 221 (1997).
18. A. Eschenbacher, R. J. Varghese, M. S. Abbas-Abadi and K. M. Van Geem, Chem. Eng. J., 428, 132087 (2022).
19. S. Catak, K. Hemelsoet, L. Hermosilla, M. Waroquier and V. Van Speybroeck, Chem. Eur. J., 17, 12027 (2011).
20. P. Das, S. Prasad and D. Kunzru, Ind. Eng. Chem. Res., 31, 2251 (1992).
21. K. K. Ghosh and D. Kunzru, Ind. Eng. Chem. Res., 27, 559 (1988).
22. Z. Dobó, G. Kecsmár, G. Nagy, T. Koós, G. Muránszky and M. Ayari, Energy Fuels, 35, 2347 (2021).
23. R. Miandad, M. A. Barakat, A. S. Aburiazaiza, M. Rehan, I. M. I. Ismail and A. S. Nizami, Int. Biodeterior. Biodegrad., 119, 239 (2017).
24. C. Vasile, M. A. Brebu, T. Karayildirim, J. Yanik and H. Darie, Fuel, 86, 477 (2007).
25. M. Elsherif, Z. A. Manan and M. Z. Kamsah, J. Nat. Gas. Sci. Eng., 24, 346 (2015).
26. M. A. Gadalla, Z. Olujic, P. J. Jansens, M. Jobson and R. Smith, Environ. Sci. Technol., 39, 6860 (2005).
27. J. M. Lee, S. Shin, S. Ahn, J. H. Chun, K. B. Lee, S. Mun, S. G. Jeon, J. G. Na and N. S. Nho, Fuel Process. Technol., 119, 204 (2014).
28. S. M. Al-Salem, A. Antelava, A. Constantinou, G. Manos and A.Dutta, J. Environ. Manage., 197, 177 (2017).
29. ASTM Method D 4530-07 Standard Test Method for Determination of Carbon Residue (Micro Method).30. S. Choi, D. H. Byun, K. Lee, J.-D. Kim and N. S. Nho, J. Pet. Sci.Eng., 146, 21 (2016).
31. M. R. Gray, R. R. Tykwinski, J. M. Stryker and X. Tan, Energy Fuels,25, 3125 (2011).
32. J. Murgich, Pet. Sci. Technol., 20, 983 (2002).
33. M. E. Abdel Aziz, G. R. Saad and M. T. Abou El-khair, Macromol.Res., 30, 900 (2022).
34. V. J. Nowlan and T. T. Tidwell, Acc. Chem. Res., 10, 252 (1977).
35. R. E. Parker and N. S. Isaacs, Chem. Rev., 59, 737 (1959).
36. R. Noyori, M. Aoki and K. Sato, Chem. Commun., 16, 1977 (2003).
37. X. Lu, H. Xu, J. Yan, W.-J. Zhou, A. Liebens and P. Wu, J. Catal.,358, 89 (2018).
38. Z. Y. Pastukhova, V. V. Levitin, E. A. Katsman and L. G. Bruk,Kinet. Catal., 62, 604 (2021).
39. R. S. Varma and K. P. Naicker, Tetrahedron Lett., 39, 7463 (1998).
40. A. Abiko, J. C. Roberts, T. Takemasa and S. Masamune, Tetrahedron Lett., 27, 4537 (1986).
41. S. Wolfe, C. F. Ingold and R. U. Lemieux, J. Am. Chem. Soc., 103,938 (1981).
42. G. S. Brown, L. L. Barton and B. M. Thomson, Waste Manage., 23,737 (2003).
43. R. R. Warrier, M. Paul and M. V. Vineetha, Genet. Plant Physiol., 3, 90 (2013).
44. O. Khalipova, S. Kuznetsova and V. Kozik, AIP Conf. Proc., 1772 (2016).
45. A. D. Awtrey and R. E. Connick, J. Am. Chem. Soc., 73, 1842 (1951).
46. C. J. Hochanadel, J. Phys. Chem., 56, 587 (1952).
47. T. M. Florence, J. Inorg. Biochem., 22, 221 (1984).
48. R. C. C. Costa, M. de Fátima Fontes Lelis, L. C. A. Oliveira, J. D. Fabris, J. D. Ardisson, R. R. V. A. Rios, C. N. Silva and R. M. Lago, Catal. Commun., 4, 525 (2003).
49. J. M. Fraile, C. Gil, J. A. Mayoral, B. Muel, L. Roldán, E. Vispe, S.Calderón and F. Puente, Appl. Catal. B: Environ., 180, 680 (2016).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로