ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 17, 2023
Revised July 7, 2023
Accepted July 10, 2023
Acknowledgements
This research was supported by the C1 Gas Refinery Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT & Future Planning (NRF-2021M3 D3A1A01022109).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Microkinetic study of syngas conversion to dimethyl ether over a bifunctional catalyst: CZA/FER

1School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea 2School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea 3Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Korea 4Department of Chemical Engineering, Ajou University, Suwon 16499, Korea (Received 17 June 2023 • Revised 7 July 2023 • Accepted 10 July 2023)
jgna@ewha.ac.kr, wblee@snu.ac.kr, mjpark@ajou.ac.kr
Korean Journal of Chemical Engineering, November 2023, 40(11), 2632-2645(14), 10.1007/s11814-023-1531-y
downloadDownload PDF

Abstract

Dimethyl ether (DME) is an environmentally friendly fuel and economical compound that can be synthesized through methanol (MeOH) dehydration or direct synthesis from syngas via the water-gas shift reaction. Catalystssuch as Cu/ZnO/Al2O3 (CZA) for syngas conversion to MeOH and ferrierite (FER), a group of zeolites, or -Al2O3 forMeOH dehydration are necessary for these reactions. A hybrid catalyst, CZA/FER, can be used to directly convert syngas into DME via MeOH. While previous studies have developed kinetic models for these catalytic reaction systemsusing lumped or microkinetic models, differences in describing elementary reactions have led to variations in detail. Inthis study, we developed a microkinetic model for DME synthesis from syngas via MeOH over a CZA/FER hybridbifunctional catalyst. We considered detailed reaction rates and site fractions to determine the dominance of DME synthesis path between the associative and dissociative paths. The model is based on a two-site fraction model for eachcatalyst, with 28 reactions over CZA and nine reactions over FER. Reaction parameters were determined using transition state theory (TST) and the UBI-QEP method for CZA and the second-order Møller-Plesset perturbation theory(MP2) for FER The pre-exponential factors of Arrhenius rate constants were estimated with experimental data at250 oC which supported the model's accuracy. Our results show that the associative pathway is dominant for DME synthesis over a CZA/FER hybrid catalyst, which differs from our previous research on microkinetic modeling for MeOHdehydration to DME over an FER zeolite. We also suggest an operating condition range for converting CO2 in the feed.We compared the relative reaction rates of elementary reactions and site fractions in each catalyst to enhance theunderstanding of the catalytic reaction system.

References

1. B. Hamed and A. Chad, Catal. Ind., 11(1), 7 (2019).
2. J. R. Di Iorio, A. J. Hoffman, C. T. Nimlos, S. Nystrom, D. Hibbitts and R. Gounder, J. Catal., 380, 161 (2019).
3. A. Brunetti, M. Migliori, D. Cozza, E. Catizzone, G. Giordano and G. Barbieri, ACS Sustain. Chem. Eng., 8(28), 10471 (2020).
4. A. Trypolskyi, A. Zhokh, V. Gritsenko, M. Chen, J. Tang and P.Strizhak, Chem. Papers, 75(7), 3429 (2021).
5. A. A. Rownaghi, F. Rezaei and J. Hedlund, Micropor. Mesopor.Mater., 151, 26 (2012).
6. L. C. Grabow and M. Mavrikakis, ACS Catal., 1(4), 365 (2011).
7. A. T. Aguayo, J. Ereña, D. Mier, J. M. Arandes, M. Olazar and J.Bilbao, Ind. Eng. Chem. Res., 46(17), 5522 (2007).
8. S. Fujita, S. Moribe, Y. Kanamori, M. Kakudate and N. Takezawa,Appl. Catal. A Gen., 207(1), 121 (2001).
9. Y. H. Lim, M. Y. Gim, H. Kim and D. H. Kim, Fuel Process. Technol., 227, 107107 (2022).
10. J. Park, Y. Woo, H. S. Jung, H. Yang, W. B. Lee, J. W. Bae and M.-J.Park, Catal. Today, 388-389, 323 (2022).
11. J. Skrzypek, M. Lachowska and H. Moroz, Chem. Eng. Sci., 46(11),2809 (1991).
12. G. H. Graaf, The synthesis of methanol in gas-solid and gas-slurry reactors, Ph. D. dissertation, Dept. Math. & Nat. Sci. Univ. Groningen, The Netherlands (1988).
13. G. H. Graaf, E. J. Stamhuis and A. A. C. M. Beenackers, Chem. Eng. Sci., 43(12), 3185 (1988).
14. G. H. Graaf, H. Scholtens, E. J. Stamhuis and A. A. C. M. Beenackers, Chem. Eng. Sci., 45(4), 773 (1990).15. G. H. Graaf, P. J. J. M. Sijtsema, E. J. Stamhuis and G. E. H. Joosten,Chem. Eng. Sci., 41(11), 2883 (1986).
16. S. Svelle, S. Kolboe, U. Olsbye and O. Swang, J. Phys. Chem. B,107(22), 5251 (2003).
17. P. G. Moses and J. K. Nørskov, ACS Catal., 3(4), 735 (2013).
18. H. Xin, X. Li, Y. Fang, X. Yi, W. Hu, Y. Chu, F. Zhang, A. Zheng, H. Zhang and X. Li, J. Catal., 312, 204 (2014).
19. J. Park, J. Cho, M.-J. Park and W. B. Lee, Catal. Today, 375, 314 (2021).
20. A. H. Motagamwala and J. A. Dumesic, Chem. Rev., 121(2), 1049 (2021).
21. A. Ghorbanpour, J. D. Rimer and L. C. Grabow, ACS Catal., 6(4), 2287 (2016).
22. C. Karakaya, H. Zhu and R. J. Kee, Chem. Eng. Sci., 123, 474 (2015).
23. C. Karakaya, S. H. Morejudo, H. Zhu and R. J. Kee, Ind. Eng. Chem.Res., 55(37), 9895 (2016).
24. A. Baz and A. Holewinski, J. Catal., 384, 1 (2020).
25. F. Figueras, A. Nohl, L. de Mourgues and Y. Trambouze, Trans.Faraday Soc., 67, 1155 (1971).
26. L. Kubelkov, J. Novákov and K. Nedomov, J. Catal., 124(2), 441 (1990).
27. S. R. Blaszkowski and R. A. van Santen, J. Phys. Chem., 99(30),11728 (1995).
28. S. R. Blaszkowski and R. A. Van Santen, J. Am. Chem. Soc., 118(21),5152 (1996).
29. A. J. Jones, S. I. Zones and E. Iglesia, J. Phys. Chem. C, 118(31),17787 (2014).
30. A. J. Jones and E. Iglesia, Angew. Chem. Int. Ed., 53(45), 12177 (2014).
31. R. T. Carr, M. Neurock and E. Iglesia, J. Catal., 278(1), 78 (2011).
32. J. Park, J. Cho, Y. Lee, M.-J. Park and W. B. Lee, Ind. Eng. Chem.Res., 58(20), 8663 (2019).
33. R. D. Cortright and J. A. Dumesic, Adv. Catal., 46, 161 (2001).
34. E. Shustorovich and H. Sellers, Surf. Sci. Rep., 31(1), 1 (1998).
35. G. Hetzer, P. Pulay and H.-J. Werner, Chem. Phys. Lett., 290(1),143 (1998).
36. T. Tagawab, G. Pleizier and Y. Amenomiya, Appl. Catal., 18(2), 285 (1985).
37. A. A. Gokhale, J. A. Dumesic and M. Mavrikakis, J. Am. Chem.Soc., 130(4), 1402 (2008).
38. N. Park, M.-J. Park, Y.-J. Lee, K.-S. Ha and K.-W. Jun, Fuel Process.Technol., 125, 139 (2014).
39. C. T. Campbell, ACS Catal., 7(4), 2770 (2017).
40. C. T. Campbell, J. Catal., 204(2), 520 (2001).
41. C. T. Campbell, Top. Catal., 1(3), 353 (1994)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로