ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 5, 2022
Revised March 28, 2023
Accepted April 10, 2023
Acknowledgements
We acknowledge the financial support by the National Key R&D Program of China (2019YFC1906700).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Electrocatalytic reduction of furfural for selective preparation of 2-methylfuran over a sandwich-structured Ni-Cu bimetallic catalyst

1State Key Laboratory of Multi-Phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China 2Sino-Danish College, University of Chinese Academy of Sciences/Sino-Danish Center for Education and Research, Beijing 100190, China (Received 5 December 2022 • Revised 28 March 2023 • Accepted 10 April 2023)
wangze@ipe.ac.cn
Korean Journal of Chemical Engineering, November 2023, 40(11), 2646-2656(11), 10.1007/s11814-023-1472-5
downloadDownload PDF

Abstract

The electrocatalytic reduction (ECR) of furfural (FF) for synthesis of 2-methylfuran (MF) is investigated, using a sandwich-structured electrode (NiCu/CalZIF/CP), with an inner substrate of carbon paper (CP), a surface layer of Ni-Cu bimetallic catalyst (metal layer), and a middle layer of calcined Ni-ZIF-8 (CalZIF) particles. It is found that the production rate (PR) and Faradaic efficiency (FE) of MF increase with the increase of metal loading, while the variation becomes stable in higher dosages. The FE of MF illustrates a rising-first-and-declining-later trend with the increase of current density, but in a slight degree compared with the system without CalZIF, indicating a better stability on anti-interference of current. The PR of MF increases with increasing current first and then becomes stable, which differs to the reducing trend in higher currents in the system without CalZIF. Under the optimized conditions with H2SO4 concentration of 0.2 M and current density of 12 mA·cm2 , the total FE of organics, the FE of MF, and the PR of MF, respectively reach to their maximum values of 82%, 66% and 75 mol·cm2 ·h1 , under the catalytic effects of the composite electrode with optimal Ni/Cu ratio of 0.04, metal layer loading amount of 3 mg·cm2 , and CalZIF dosage of 1 mg·cm2 . The electrode can be regenerated after re-elctrodeposition treatment. The deactivation of catalyst is found relative to the loss and agglomeration of the metals, which is resulted from the corrosion and rearrangement of the metal atoms over the electrode surface.

References

1. C. Xu, E. Paone, D. Rodríguez-Padrón, R. Luque and F. Mauriello,Chem. Soc. Rev., 49(13), 4273 (2020).
2. S. Chen, R. Wojcieszak, F. Dumeignil, E. Marceau and S. Royer,Chem. Rev., 118(22), 11023 (2018).
3. S. Bhogeswararao and D. Srinivas, J. Catal., 327, 65 (2015).4. A. Bohre, S. Dutta, B. Saha and M. M. Abu-Omar, ACS Sustain.Chem. Eng., 3(7), 1263 (2015).
5. S. Shiva Kumar and H. Lim, Energy Rep., 8, 13793 (2022).
6. L. Wang, Y. Zhu, Z. Zeng, C. Lin, M. Giroux, L. Jiang, Y. Han, J.Greeley, C. Wang and J. Jin, Nano Energy, 31, 456 (2017).
7. H. Kim, H. Park, H. Bang and S.-K. Kim, Korean J. Chem. Eng.,37(8), 1275 (2020).
8. R. M. Al Radadi and M. A. M. Ibrahim, Korean J. Chem. Eng., 38(1),152 (2021).
9. Y. Lei, Z. Wang, A. Bao, X. Tang, X. Huang, H. Yi, S. Zhao, T. Sun,J. Wang and F. Gao, Chem. Eng. J., 453, 139663 (2023).
10. X. An, S. Li, X. Hao, Z. Xie, X. Du, Z. Wang, X. Hao, A. Abudula and G. Guan, Renew. Sust. Energ. Rev., 143, 110952 (2021).
11. W. J. Wang, L. Scudiero and S. Ha, Korean J. Chem. Eng., 39(3), 461 (2022).12. F. Rehman, M. Delowar Hossain, A. Tyagi, D. Lu, B. Yuan and Z.
Luo, Mater. Today, 44, 136 (2021).
13. S. H. Jeon, K. Kim, H. Cho, H. C. Yoon and J.-I. Han, Korean J.Chem. Eng., 38(6), 1272 (2021).
14. X. Lu, J. Wang, W. Peng, N. Li, L. Liang, Z. Cheng, B. Yan, G. Yang and G. Chen, Fuel, 331, 125845 (2023).
15. Y. Du, X. Chen and C. Liang, Mol. Catal., 535, 112831 (2023).16. U. Sanyal, K. Koh, L. C. Meyer, A. Karkamkar and O. Y. Gutiérrez,J. Appl. Electrochem., 51(1), 27 (2021).
17. P. Zhou, L. Li, V. S. S. Mosali, Y. Chen, P. Luan, Q. Gu, D. R. Turner,L. Huang and J. Zhang, Angew. Chem. Int. Ed., 61(13), e202117809 (2022).
18. S. Jung and E. J. Biddinger, ACS Sustain. Chem. Eng., 4(12), 6500 (2016).
19. Z. Yang, X. Chou, H. Kan, Z. Xiao and Y. Ding, ACS Sustain. Chem.Eng., 10(22), 7418 (2022).
20. S. Jung and E. J. Biddinger, Energy Technol., 6(7), 1370 (2018).
21. S. Jung, A. N. Karaiskakis and E. J. Biddinger, Catal. Today, 323, 26 (2019).
22. P. Zhou, Y. Chen, P. Luan, X. Zhang, Z. Yuan, S.-X. Guo, Q. Gu, B.Johannessen, M. Mollah, A. L. Chaffee, D. R. Turner and J. Zhang, Green Chem., 23(8), 3028 (2021).
23. P. Nilges and U. Schröder, Energy Environ. Sci., 6(10), 2925 (2013).24. A. S. May and E. J. Biddinger, ACS Catal., 10(5), 3212 (2020).
25. X. H. Chadderdon, D. J. Chadderdon, J. E. Matthiesen, Y. Qiu, J. M.Carraher, J.-P. Tessonnier and W. Li, J. Am. Chem. Soc., 139(40),14120(2017).
26. R.J. Dixit, K. Bhattacharyya, V.K. Ramani and S. Basu, Green Chem.,23(11), 4201 (2021).27. X. Lan, N. Huang, J. Wang and T. Wang, ChemComm, 54(6), 584 (2018).
28. A. S. May, S. M. Watt and E. J. Biddinger, React. Chem. Eng., 6(11),2075 (2021).
29. N. Shan, M. K. Hanchett and B. Liu, J. Phys. Chem. C, 121(46),25768 (2017).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로