Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 5, 2022
Revised March 28, 2023
Accepted April 10, 2023
- Acknowledgements
- We acknowledge the financial support by the National Key R&D Program of China (2019YFC1906700).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Electrocatalytic reduction of furfural for selective preparation of 2-methylfuran over a sandwich-structured Ni-Cu bimetallic catalyst
Abstract
The electrocatalytic reduction (ECR) of furfural (FF) for synthesis of 2-methylfuran (MF) is investigated,
using a sandwich-structured electrode (NiCu/CalZIF/CP), with an inner substrate of carbon paper (CP), a surface layer
of Ni-Cu bimetallic catalyst (metal layer), and a middle layer of calcined Ni-ZIF-8 (CalZIF) particles. It is found that
the production rate (PR) and Faradaic efficiency (FE) of MF increase with the increase of metal loading, while the variation becomes stable in higher dosages. The FE of MF illustrates a rising-first-and-declining-later trend with the
increase of current density, but in a slight degree compared with the system without CalZIF, indicating a better stability
on anti-interference of current. The PR of MF increases with increasing current first and then becomes stable, which
differs to the reducing trend in higher currents in the system without CalZIF. Under the optimized conditions with
H2SO4 concentration of 0.2 M and current density of 12 mA·cm2
, the total FE of organics, the FE of MF, and the PR
of MF, respectively reach to their maximum values of 82%, 66% and 75 mol·cm2
·h1
, under the catalytic effects of
the composite electrode with optimal Ni/Cu ratio of 0.04, metal layer loading amount of 3 mg·cm2
, and CalZIF dosage of 1 mg·cm2
. The electrode can be regenerated after re-elctrodeposition treatment. The deactivation of catalyst is
found relative to the loss and agglomeration of the metals, which is resulted from the corrosion and rearrangement of
the metal atoms over the electrode surface.
References
2. S. Chen, R. Wojcieszak, F. Dumeignil, E. Marceau and S. Royer,Chem. Rev., 118(22), 11023 (2018).
3. S. Bhogeswararao and D. Srinivas, J. Catal., 327, 65 (2015).4. A. Bohre, S. Dutta, B. Saha and M. M. Abu-Omar, ACS Sustain.Chem. Eng., 3(7), 1263 (2015).
5. S. Shiva Kumar and H. Lim, Energy Rep., 8, 13793 (2022).
6. L. Wang, Y. Zhu, Z. Zeng, C. Lin, M. Giroux, L. Jiang, Y. Han, J.Greeley, C. Wang and J. Jin, Nano Energy, 31, 456 (2017).
7. H. Kim, H. Park, H. Bang and S.-K. Kim, Korean J. Chem. Eng.,37(8), 1275 (2020).
8. R. M. Al Radadi and M. A. M. Ibrahim, Korean J. Chem. Eng., 38(1),152 (2021).
9. Y. Lei, Z. Wang, A. Bao, X. Tang, X. Huang, H. Yi, S. Zhao, T. Sun,J. Wang and F. Gao, Chem. Eng. J., 453, 139663 (2023).
10. X. An, S. Li, X. Hao, Z. Xie, X. Du, Z. Wang, X. Hao, A. Abudula and G. Guan, Renew. Sust. Energ. Rev., 143, 110952 (2021).
11. W. J. Wang, L. Scudiero and S. Ha, Korean J. Chem. Eng., 39(3), 461 (2022).12. F. Rehman, M. Delowar Hossain, A. Tyagi, D. Lu, B. Yuan and Z.
Luo, Mater. Today, 44, 136 (2021).
13. S. H. Jeon, K. Kim, H. Cho, H. C. Yoon and J.-I. Han, Korean J.Chem. Eng., 38(6), 1272 (2021).
14. X. Lu, J. Wang, W. Peng, N. Li, L. Liang, Z. Cheng, B. Yan, G. Yang and G. Chen, Fuel, 331, 125845 (2023).
15. Y. Du, X. Chen and C. Liang, Mol. Catal., 535, 112831 (2023).16. U. Sanyal, K. Koh, L. C. Meyer, A. Karkamkar and O. Y. Gutiérrez,J. Appl. Electrochem., 51(1), 27 (2021).
17. P. Zhou, L. Li, V. S. S. Mosali, Y. Chen, P. Luan, Q. Gu, D. R. Turner,L. Huang and J. Zhang, Angew. Chem. Int. Ed., 61(13), e202117809 (2022).
18. S. Jung and E. J. Biddinger, ACS Sustain. Chem. Eng., 4(12), 6500 (2016).
19. Z. Yang, X. Chou, H. Kan, Z. Xiao and Y. Ding, ACS Sustain. Chem.Eng., 10(22), 7418 (2022).
20. S. Jung and E. J. Biddinger, Energy Technol., 6(7), 1370 (2018).
21. S. Jung, A. N. Karaiskakis and E. J. Biddinger, Catal. Today, 323, 26 (2019).
22. P. Zhou, Y. Chen, P. Luan, X. Zhang, Z. Yuan, S.-X. Guo, Q. Gu, B.Johannessen, M. Mollah, A. L. Chaffee, D. R. Turner and J. Zhang, Green Chem., 23(8), 3028 (2021).
23. P. Nilges and U. Schröder, Energy Environ. Sci., 6(10), 2925 (2013).24. A. S. May and E. J. Biddinger, ACS Catal., 10(5), 3212 (2020).
25. X. H. Chadderdon, D. J. Chadderdon, J. E. Matthiesen, Y. Qiu, J. M.Carraher, J.-P. Tessonnier and W. Li, J. Am. Chem. Soc., 139(40),14120(2017).
26. R.J. Dixit, K. Bhattacharyya, V.K. Ramani and S. Basu, Green Chem.,23(11), 4201 (2021).27. X. Lan, N. Huang, J. Wang and T. Wang, ChemComm, 54(6), 584 (2018).
28. A. S. May, S. M. Watt and E. J. Biddinger, React. Chem. Eng., 6(11),2075 (2021).
29. N. Shan, M. K. Hanchett and B. Liu, J. Phys. Chem. C, 121(46),25768 (2017).