Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 9, 2023
Revised June 17, 2023
Accepted June 23, 2023
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Techno-economic analysis of green and blue hybrid processes for ammonia production
Abstract
In a blue ammonia plant, hydrogen required for ammonia synthesis is traditionally produced through
steam reforming. This process is cost competitive but has the drawbacks of high CO2 emissions and excessive energy
consumption. On the other hand, in a green ammonia plant, hydrogen production through water electrolysis avoids
CO2 emissions and utilizes renewable energy sources. However, high stack costs and electricity prices degrades the economic viability of the process. Recognizing the potential benefits of both green and blue ammonia production methods, novel hybrid processes have been proposed to integrate these approaches. A thermoneutral tri-reformer has been
introduced as a replacement for the energy-intensive steam reforming process, offering a means to eliminate CO2 emissions. In the green ammonia process, hydrogen generated by a water electrolyzer, along with nitrogen obtained from an
air separation unit (ASU), are employed for ammonia synthesis. However, the high-purity oxygen produced as a
byproduct from the electrolyzer and ASU has not been utilized thus far. This oxygen can be fed into the tri-reformer to
produce blue hydrogen or syngas. To evaluate the technical and economic advantages resulting from the integration of
these systems, a techno-economic assessment was conducted on these hybrid processes as well as conventional ones in
the literature [3]. The results demonstrate that the proposed processes exhibit superior economic performance compared to conventional approaches, highlighting the potential benefits of system integration.
Keywords
References
2. R. Lan, J. Irvine and S. Tao, Int. J. Hydrogen Energy, 37, 1482 (2012).
3. H. Zhang, L. Wang, J. V. Herleb, F. Maréchalc and U. Desideri, Appl.Energy, 259, 114135 (2020).
4. P. H. Pfromm, J. Renew. Sustain. Energy, 9, 034702 (2017).
5. J. Andersson and J. Lundgren, Appl. Energy, 130, 484 (2014).
6. The Royal Society, Ammonia: zero-carbon fertiliser, fuel and energy store (2020).
7. D. Flórez-Orrego, F. Maréchal, S. Silvio de Oliveira Jr., Energy Convers. Manage., 194, 22 (2019).
8. L. Wang, M. Pérez-Fortes, H. Madi, S. Diethelm, J. V. Herleb and F. Maréchal, Appl. Energy, 211, 1060 (2018).
9. H. Zhang, L. Wang, J. V. Herleb, F. Maréchalc and U. Desideri, Energy, 12, 3742 (2019).
10. L. A. Wickramasinghe, T. Ogawa, R. R. Schrock and P. Müller, J.Am. Chem. Soc., 139, 9132 (2017).
11. O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson and S.Few, Int. J. Hydrogen Energy, 42, 30470 (2017).
12. C. D. Demirhan, W. W. Tso, J. B. Powell and E. N. Pistikopoulos, AIChE J., 65, 7 (2019).
13. J. Jang and M. Han, Int. J. Hydrogen Energy, 47, 9139 (2022).
14. A. T. Damanabi and F. Bahadori, J. CO2 Util., 21, 227 (2017).
15. A. Dwivedi, R. Gudi and P. Biswas, J. CO2 Util., 24, 376 (2018).
16. M. Sadeghi, M. Jafari, M. Yari and S. M. S. Mahmoudi, J. CO2 Util., 25, 283 (2018).
17. C. Song and W. Pan, Catal. Today, 98, 463 (2004).
18. D. Flórez-Orrego and Jr. S. Oliveira, Energy, 141, 2540 (2017).
19. R. Turton, R. C. Bailie, W. B. Whiting and J. A. Shaeiwitz, Analysis, synthesis and design of chemical processes, Pearson Education (2008).
20. J. Xu and G. F. Froment, AIChE J., 35, 88 (1989).
21. T. Numaguchi and K. Kikuchi, Chem. Eng. Sci., 43, 2295 (1988).
22. D. L. Trimm and C. W. Lam, Chem. Eng. Sci., 35, 1405 (1980).
23. H. F. Rase, Case studies and design data, New York, John Wiley and Sons (1977).
24. J. Morud and S. Skogestad, AIChE J., 44, 888 (1998).
25. A. Dutta and S. D. Phillips, Technical Report NREL (2009).
26. C. N. Hamelink, A. P. Faaij, H. D. Uil and H. Boerrigter, Energy, 29,1743 (2004).
27. Energy DG. Quarterly report on European electricity markets (2017).
28. Committee on Climate Change, Hydrogen in a low-carbon economy (2019).
29. Annual report 2017 of Gestore mercati energetici (2017).
30. S. Gary, P. Nick and S. Krista, Farmdoc Daily, 11, 114 (2021).
31. C. Xi, L. Gongping and J. Wanqin, Green Energy Environ., 6, 176 (2021).
32. M. Bozorg, A. Bernardetta, V. Piccialli, S. Álvaro and C. Castel, Chem.Eng. Sci., 207, 1196 (2019).
33. J. Guilera, J. R. Morante and T. Andreu, Convers. Manage., 162, 218 (2018).
34. H. Naims, Environ. Sci. Pollut. Res., 23, 2226 (2016).
35. E. Oko, B. Zacchello, M. Wang and A. Fethi, Greenhouse Gases Sci.Technol., 8(4), 686 (2018).
36. R. Stephanie, S. Sumesh, P. Tom, W. Liang, Ø. Torbjørn and T. N.Alex, Biotechnol. Biofuels, 10, 150 (2017).
37. https://www.alibaba.com.
38. R. M. Swanson, A. Platon, J. A. Satrio and R. C. Brown, Fuel, 89,11 (2010).
39. M. Akbari, A. O. Oyedun and A. Kumar, Energy, 151, 133 (2018).
40. R. Bañares-Alcántara, G. D. Iii, M. Fiaschetti, P. Grünewald, J. M.
Lopez and E. Tsang, Analysis of islanded ammonia-based energy storage systems, University of Oxford (2015).
41. E. C. D. Tan, M. Talmadge, D. Abhijit, J. Hensley, J. Schaidle and M. Biddy, Technical Rep.: NREL/TP-5100-62402 (2015).
42. F. Maréchal and B. Kalitventzeff, Chem. Eng., 22, 149 (1998).
43. F. Maréchal and B. Kalitventzeff, Chem. Eng., 23, 133 (1999)