ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 9, 2023
Revised June 17, 2023
Accepted June 23, 2023
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Techno-economic analysis of green and blue hybrid processes for ammonia production

Department of Chemical Engineering & Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
mwhan@cnu.ac.kr
Korean Journal of Chemical Engineering, November 2023, 40(11), 2657-2670(14), 10.1007/s11814-023-1520-1
downloadDownload PDF

Abstract

In a blue ammonia plant, hydrogen required for ammonia synthesis is traditionally produced through steam reforming. This process is cost competitive but has the drawbacks of high CO2 emissions and excessive energy consumption. On the other hand, in a green ammonia plant, hydrogen production through water electrolysis avoids CO2 emissions and utilizes renewable energy sources. However, high stack costs and electricity prices degrades the economic viability of the process. Recognizing the potential benefits of both green and blue ammonia production methods, novel hybrid processes have been proposed to integrate these approaches. A thermoneutral tri-reformer has been introduced as a replacement for the energy-intensive steam reforming process, offering a means to eliminate CO2 emissions. In the green ammonia process, hydrogen generated by a water electrolyzer, along with nitrogen obtained from an air separation unit (ASU), are employed for ammonia synthesis. However, the high-purity oxygen produced as a byproduct from the electrolyzer and ASU has not been utilized thus far. This oxygen can be fed into the tri-reformer to produce blue hydrogen or syngas. To evaluate the technical and economic advantages resulting from the integration of these systems, a techno-economic assessment was conducted on these hybrid processes as well as conventional ones in the literature [3]. The results demonstrate that the proposed processes exhibit superior economic performance compared to conventional approaches, highlighting the potential benefits of system integration.


References

1. G. Soloveichik, AIChE annual meeting, Minneapolis, October 29-November 3 (2017).
2. R. Lan, J. Irvine and S. Tao, Int. J. Hydrogen Energy, 37, 1482 (2012).
3. H. Zhang, L. Wang, J. V. Herleb, F. Maréchalc and U. Desideri, Appl.Energy, 259, 114135 (2020).
4. P. H. Pfromm, J. Renew. Sustain. Energy, 9, 034702 (2017).
5. J. Andersson and J. Lundgren, Appl. Energy, 130, 484 (2014).
6. The Royal Society, Ammonia: zero-carbon fertiliser, fuel and energy store (2020).
7. D. Flórez-Orrego, F. Maréchal, S. Silvio de Oliveira Jr., Energy Convers. Manage., 194, 22 (2019).
8. L. Wang, M. Pérez-Fortes, H. Madi, S. Diethelm, J. V. Herleb and F. Maréchal, Appl. Energy, 211, 1060 (2018).
9. H. Zhang, L. Wang, J. V. Herleb, F. Maréchalc and U. Desideri, Energy, 12, 3742 (2019).
10. L. A. Wickramasinghe, T. Ogawa, R. R. Schrock and P. Müller, J.Am. Chem. Soc., 139, 9132 (2017).
11. O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson and S.Few, Int. J. Hydrogen Energy, 42, 30470 (2017).
12. C. D. Demirhan, W. W. Tso, J. B. Powell and E. N. Pistikopoulos, AIChE J., 65, 7 (2019).
13. J. Jang and M. Han, Int. J. Hydrogen Energy, 47, 9139 (2022).
14. A. T. Damanabi and F. Bahadori, J. CO2 Util., 21, 227 (2017).
15. A. Dwivedi, R. Gudi and P. Biswas, J. CO2 Util., 24, 376 (2018).
16. M. Sadeghi, M. Jafari, M. Yari and S. M. S. Mahmoudi, J. CO2 Util., 25, 283 (2018).
17. C. Song and W. Pan, Catal. Today, 98, 463 (2004).
18. D. Flórez-Orrego and Jr. S. Oliveira, Energy, 141, 2540 (2017).
19. R. Turton, R. C. Bailie, W. B. Whiting and J. A. Shaeiwitz, Analysis, synthesis and design of chemical processes, Pearson Education (2008).
20. J. Xu and G. F. Froment, AIChE J., 35, 88 (1989).
21. T. Numaguchi and K. Kikuchi, Chem. Eng. Sci., 43, 2295 (1988).
22. D. L. Trimm and C. W. Lam, Chem. Eng. Sci., 35, 1405 (1980).
23. H. F. Rase, Case studies and design data, New York, John Wiley and Sons (1977).
24. J. Morud and S. Skogestad, AIChE J., 44, 888 (1998).
25. A. Dutta and S. D. Phillips, Technical Report NREL (2009).
26. C. N. Hamelink, A. P. Faaij, H. D. Uil and H. Boerrigter, Energy, 29,1743 (2004).
27. Energy DG. Quarterly report on European electricity markets (2017).
28. Committee on Climate Change, Hydrogen in a low-carbon economy (2019).
29. Annual report 2017 of Gestore mercati energetici (2017).
30. S. Gary, P. Nick and S. Krista, Farmdoc Daily, 11, 114 (2021).
31. C. Xi, L. Gongping and J. Wanqin, Green Energy Environ., 6, 176 (2021).
32. M. Bozorg, A. Bernardetta, V. Piccialli, S. Álvaro and C. Castel, Chem.Eng. Sci., 207, 1196 (2019).
33. J. Guilera, J. R. Morante and T. Andreu, Convers. Manage., 162, 218 (2018).
34. H. Naims, Environ. Sci. Pollut. Res., 23, 2226 (2016).
35. E. Oko, B. Zacchello, M. Wang and A. Fethi, Greenhouse Gases Sci.Technol., 8(4), 686 (2018).
36. R. Stephanie, S. Sumesh, P. Tom, W. Liang, Ø. Torbjørn and T. N.Alex, Biotechnol. Biofuels, 10, 150 (2017).
37. https://www.alibaba.com.
38. R. M. Swanson, A. Platon, J. A. Satrio and R. C. Brown, Fuel, 89,11 (2010).
39. M. Akbari, A. O. Oyedun and A. Kumar, Energy, 151, 133 (2018).
40. R. Bañares-Alcántara, G. D. Iii, M. Fiaschetti, P. Grünewald, J. M.
Lopez and E. Tsang, Analysis of islanded ammonia-based energy storage systems, University of Oxford (2015).
41. E. C. D. Tan, M. Talmadge, D. Abhijit, J. Hensley, J. Schaidle and M. Biddy, Technical Rep.: NREL/TP-5100-62402 (2015).
42. F. Maréchal and B. Kalitventzeff, Chem. Eng., 22, 149 (1998).
43. F. Maréchal and B. Kalitventzeff, Chem. Eng., 23, 133 (1999)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로