Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 29, 2022
Revised February 4, 2023
Accepted March 2, 2023
- Acknowledgements
- The authors thank the support of Shahid Sadoughi University of Medical Sciences (Grant No: 7565).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Modeling of heterogeneous fenton process using catalyst produced from date palm waste for dye removal: Catalyst characterization and process optimization
Abstract
This study evaluated the efficiency of the heterogeneous Fenton process using magnetic activated carbon
catalyst produced from date palm waste in removing direct dye from aqueous solutions. The experimental runs and
optimal conditions for the effect of contact time, solution pH, catalyst dose, and persulfate dose were determined based
on the Box-Behnken design under response surface methodology (RSM). FTIR, FESEM, XRD, EDS, BET, and VSM
analyses were used to investigate the characteristics of the catalyst. The analysis of variance (ANOVA) verified that the
selected statistical model with R2
0.95, p-value<0.0001, and F-value 58.67 was significant. The results of optimal conditions showed that at a dye concentration of 50 mg/L, catalyst dose 0.96 g/L, persulfate dose 9.7 mM, pH 7 and contact
time 84 min, maximum removal efficiency of DR80, DB80, DBw103 and COD was 92.69, 97.07, 73.85, and 60%,
respectively. After five cycles of catalyst regeneration, the results showed that the catalyst could be utilized several times
effectively for dye removal.
Keywords
References
2. A. C. Lucilha, C. E. Bonancêa, W. J. Barreto and K. Takashima, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 75, 389 (2010).
3. T. C. Egbosiuba, A. S. Abdulkareem, A. S. Kovo, E. A. Afolabi, J. O.Tijani, M. Auta and W. D. Roos, Chem. Eng. Res. Des., 153, 315 (2020).
4. F. Kallel, F. Bouaziz, F. Chaari, L. Belghith, R. Ghorbel and S. E.Chaabouni, Process Saf. Environ. Protect., 102, 30 (2016).
5. J. d. J. da Silveira Neta, G. C. Moreira, C. J. da Silva, C. Reis and E. L. Reis, Desalination, 281, 55 (2011).
6. S. M. Pormazar and A. Dalvand, Korean J. Chem. Eng., 37, 2192 (2020).
7. Z. Cheng, L. Zhang, X. Guo, X. Jiang and T. Li, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 137, 1126 (2015).
8. J. Alagesan, M. Jaisankar, S. Muthuramalingam, E. Mousset and
P. V. Chellam, Chemosphere, 262, 128381 (2021).
9. S. Álvarez-Torrellas, G. Ovejero, R. García-Lovera, A. Rodríguez and
J. García, Clean Technol. Environ. Policy, 18, 1085 (2016).10. M. Nawaz, W. Miran, J. Jang and D. S. Lee, Catal. Today, 282, 38 (2017).
11. Y. A. Patil, B. Sadhu, D. R. Boraste, A. L. Borkar and G. S. Shankarling, J. Mol. Struct., 1202, 127278 (2020).
12. S. Saber-Samandari, S. Saber-Samandari, H. Joneidi-Yekta and M.Mohseni, Chem. Eng. J., 308, 1133 (2017).
13. E. H. C. de Oliveira, D. M. d. S. M. Fraga, M. P. da Silva, T. J. M.Fraga, M. N. Carvalho, E. M. P. de Luna Freire, M. G. Ghislandi and M. A. da Motta Sobrinho, J. Environ. Chem. Eng., 7, 103001 (2019).
14. A. Abd-Elhamid, E. A. Kamoun, A. A. El-Shanshory, H. M. Soliman and H. Aly, J. Mol. Liq., 279, 530 (2019).
15. U. Tyagi, Groundwater Sust. Dev., 10, 100303 (2020).
16. K. Rubeena, P. H. P. Reddy, A. Laiju and P. Nidheesh, J. Environ.Manage., 226, 320 (2018).
17. J. Du, S. H. Kim, M. A. Hassan, S. Irshad and J. Bao, Environ. Sci.Pollut. Res., 27, 37286 (2020).
18. S. Xiao, M. Cheng, H. Zhong, Z. Liu, Y. Liu, X. Yang and Q. Liang,Chem. Eng. J., 384, 123265 (2020).
19. M. O. Omorogie, A. E. Ofomaja, Clean Technol. Environ. Policy, 19,2191 (2017).
20. Z. Yang, X. B. Gong, L. Peng, D. Yang and Y. Liu, Chemosphere, 208,665 (2018).
21. S. J. Mazivila, I. A. Ricardo, J. M. Leitão and J. C. E. da Silva, Trends Environ. Anal. Chem., 24, e00072 (2019).
22. M. H. Zhang, H. Dong, L. Zhao, D. X. Wang and D. Meng, Sci. Total Environ., 670, 110 (2019).
23. Y. Zhu, R. Zhu, Y. Xi, J. Zhu, G. Zhu and H. He, Appl. Catal. B: Environ., 255, 117739 (2019).
24. O. L. Nwanji, M. O. Omorogie, J. O. Babalola and J. O. Olowoyo, Biomass Conv. Biorefinery, 11, 1853 (2021).
25. P. Sreeja and K. Sosamony, Procedia Technol., 24, 217 (2016).
26. M. Jose, K. Sriram, R. Reshma, U. Vidya and S. Shukla, J. Environ. Chem. Eng., 6, 3709 (2018).
27. P. Nidheesh and R. Rajan, RSC Adv., 6, 5330 (2016).
28. M. Adeli Sardooei, M. Khodaverdizadeh and O. Esmaeilipour, Int. J. Agric. Manage. Dev., 11, 455 (2021).
29. B. D'Cruz, M. Madkour, M. O. Amin and E. Al-Hetlani, Mater. Chem. Phys., 240, 122109 (2020).
30. H. Zhang, Y. Yan and L. Yang, Adsorpt. Sci. Technol., 26, 533 (2008).
31. M. Hosseinzehi, M. H. Ehrampoush, F. Tamaddon, M. Mokhtari and A. Dalvand, Int. J. Environ. Anal. Chem., 1 (2021).
32. X. Song, J. Mo, Y. Fang, S. Luo, J. Xu and X. Wang, Environ. Sci.Pollut. Res., 29, 35204 (2022).
33. D. Dirgayanti, S. Koesnarpadi and N. Hindryawati, IOP conference series: Earth and environmental science, IOP Publishing, 012070 (2021).
34. R. Rezaei Kalantry, A. Jonidi Jafari, A. Esrafili, B. Kakavandi, A. Gholizadeh and A. Azari, Desalin. Water Treat., 57, 6411 (2016).
35. A. Azari, H. Gharibi, B. Kakavandi, G. Ghanizadeh, A. Javid, A. H. Mahvi, K. Sharafi and T. Khosravia, J. Chem. Technol. Biotechnol., 92, 188 (2017).
36. C. Anyika, N. A. M. Asri, Z. A. Majid, A. Yahya and J. Jaafar, Nanotechnol. Environ. Eng., 2, 1 (2017).
37. A. J. Jafari, B. Kakavandi, N. Jaafarzadeh, R. R. Kalantary, M. Ahmadi and A. A. Babaei, J. Ind. Eng. Chem., 45, 323 (2017).
38. S. Rodríguez-Sánchez, B. Ruiz, D. Martínez-Blanco, M. SánchezArenillas, M. A. Diez, J. F. Marco, P. Gorria and E. Fuente, Appl. Surf. Sci., 551, 149407 (2021).
39. A. Manassa and P. Seesuriyachan, Biomass Conv. Biorefinery, 11, 1029 (2021).
40. H. Zarei, S. Nasseri, R. Nabizadeh, F. Shemirani, A. Dalvand and A. H. Mahvi, Desalin. Water Treat., 67, 196 (2017).
41. S. M. Pormazar and A. Dalvand, Int. J. Environ. Anal. Chem., 102, 1764 (2022).
42. W. Srimoke, V. Kanokkantapong, N. Supakata and W. Limmun, Arabian J. Chem., 15, 104213 (2022).
43. N. Zhang, C. Xue, K. Wang and Z. Fang, Chem. Eng. J., 380, 122516 (2020).
44. Y. Zhang, P. Wu, Z. Chen, L. Zhou, Y. Zhao, Y. Lai, Y. Duan, F. Wang and S. Li, Mater. Res. Bull., 113, 14 (2019).
45. Y. Lei, H. Zhang, J. Wang and J. Ai, Chem. Eng. J., 270, 73 (2015).
46. A. H. Hilles, S. S. A. Amr, R. A. Hussein, O. D. El-Sebaie and A. I. Arafa, J. Environ. Manage., 166, 493 (2016).
47. S. Hadi, E. Taheri, M. M. Amin, A. Fatehizadeh and R. L. Gardas, J. Mol. Liq., 328, 115408 (2021).
48. P. V. Nidheesh, Environ. Sci. Pollut. Res., 24, 27047 (2017).
49. R. L. Johnson, P. G. Tratnyek and R. O. B. Johnson, Environ. Sci. Technol., 42, 9350 (2008).
50. M. M. Arimi, Prog. Nat. Sci.: Mater. Int., 27, 275 (2017).
51. O. E. Kartal, Am. J. Phys. Chem., 7, 45 (2018).
52. K. Sarath, R. Gandhimathi, S. Ramesh and P. Nidheesh, Desalin. Water Treat., 57, 11872 (2016).
53. S. A. Kordkandi and M. Forouzesh, J. Taiwan Inst. Chem. Eng., 45, 2597 (2014).
54. M. Khodadadi, A. H. Panahi, T. J. Al-Musawi, M. Ehrampoush and A. Mahvi, J. Water Process Eng., 32, 100943 (2019).
55. G. Anil, J. Scaria and P. V. Nidheesh, Water, 14, 3350 (2022). 56. A. J. Dos Santos, I. Sirés, A. P. Alves, C. A. Martínez-Huitle and E. Brillas, Chemosphere, 240, 124838 (2020).
57. H. Jiang, Y. Sun, J. Feng and J. Wang, Water Sci. Technol., 74, 1116 (2016).
58. P. Nazari and S. Setayesh, Int. J. Environ. Sci. Technol., 16, 6329 (2019)