Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 12, 2022
Revised March 3, 2023
Accepted March 19, 2023
- Acknowledgements
- The financial support of Istanbul Technical University under project ID MAB-2021-43188 (Dr. Olga Koba-Ucun) is acknowledged
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Reactive dye effluent treatment with peroxide-assisted ozonation: Effects of persulfate, peracetic acid and percarbonate
Abstract
Simulated reactive dyebath effluent (pH11.0-11.5) bearing the commercially important textile azo dye
Reactive Red 21 (100 mg/L) can be successfully decolorized via ozone (feed rate=72 mg/min) and peroxide (=0.75-
6.00 mM)/ozone treatment processes. Persulfate (PS), peracetic acid (PAA) and percarbonate (PC) were selected as
alternative oxidants to the more conventional hydrogen peroxide. Color (peak absorbance) and total organic carbon
(TOC) removals increased with increasing PS concentration, but decreased when PC was introduced due to free radical scavenging effects of carbonate alkalinity. PAA improved color and TOC removal rates, but thereby also contributed to the TOC content of the dyebath effluent. PAA-assisted ozonation showed the highest performance in terms of
color removal at an optimum PAA concentration (=1.5 mM). According to the gas phase-and-dissolved ozone measurements, addition of the peroxides PS-PAA enhanced ozone decomposition and increased ozone absorption rates
whereas PC addition stabilized aqueous, molecular ozone. The originally non-toxic reactive dyebath effluent (10% relative inhibition) did not exhibit serious acute toxicity towards Vibrio fischeri photobacterium throughout ozonation and
ozone/PS treatment, whereas a slight increase was observed for ozone/PAA-ozone/PC that decreased with applied
ozone dose. The 7th-day-biochemical-oxygen-demand (BOD7; <10 mg/L) decreased with ozone dose speaking for less
biodegradable oxidation products
Keywords
References
2. I. Arslan-Alaton, Chemosphere, 51, 825 (2003). 3. M. N. Amin and R. S. Blackburn, ACS Sustain. Chem. Eng., 3, 725 (2015).
4. N. Y. Donkadokula, A. K. Kola, I. Naz and D. Saroj, Rev. Environ. Sci. Biotechnol., 19, 543 (2020).
5. M. Gao, Z. Zeng, B. Sun, H. Zou, J. Chen and L. Shao, Chemosphere, 89, 190 (2012).
6. S. Ledakowicz and K. Pázdzior, Molecules, 26, 870 (2021).
7. M. H. Kim, C. H. Hwang, S. Bin Kang, S. Kim, S. W. Park, Y. S. Yun and S. W. Won, Chem. Eng. J., 280, 18 (2015).
8. N. H. Ince and G. Tezcanli, Dyes Pigments, 49, 145 (2001).
9. I. Arslan-Alaton and O. Seremet, J. Environ. Sci. Heal. A, 39, 1681 (2004).
10. J. E. Lee, Y. S. Ok, D. C. W. Tsang, J. H. Song, S.-C. Jung and Y.-K. Park, Sci. Total Environ., 719, 137405 (2020).
11. A. Behnami, J.-P. Croué, E. Aghayani and M. Pourakbar, RSC Adv., 11, 36965 (2021).
12. R. Rashid, I. Shafiq, P. Akhter, M. J. Iqbal and M. Hussain, Environ. Sci. Pollut. Res., 28, 9050 (2021).
13. M. Shabir, M. Yasin, M. Hussain, I. Shafiq, P. Akhter, A.-S. Nizami, B.-H. Jeon and Y.-K. Park, J. Ind. Eng. Chem., 112, 1 (2022).
14. A. Baban, A. Yediler, D. Lienert, N. Kemerdere and A. Kettrup,Dyes Pigments, 58, 93 (2003).
15. L. B. Chu, X. H. Xing, A. F. Yu, X. L. Sun and B. Jurcik, Proc. Safe. Environ. Prot., 86, 389 (2008).
16. G. Ciardelli and N. Ranieri, Water Res., 35, 567 (2001).
17. A. H. Konsowa, Desalination, 158, 233 (2003).
18. H. Selcuk, Dyes Pigments, 64, 217 (2005).
19. M. F. Sevimli and H. Z. Sarikaya, J. Chem. Technol. Biotechnol., 77, 842 (2002).
20. B. Shriram and S. Kanmani, Inst. Public Health Eng., 9, 15 (2014).
21. S. Khuntia, S. K. Majumder and P. Ghosh, J. Environ. Chem. Eng., 4, 2250 (2016).
22. J. M. Fanchiang and D. H. Tseng, Env. Technol., 30, 161 (2009).
23. M. B. Kasiri, N. Modirshahla and H. Mansouri, Int. J. Ind. Chem., 4, 3 (2013).
24. M. Koch, A. Yediler, D. Lienert, G. Insel and A. Kettrup, Chemosphere, 46, 109 (2002).
25. L. W. Lackey, R. O. Mines and P. T. McCreanor, J. Hazard. Mater., 138, 357 (2006).
26. M. T. F. Tabrizi, D. Glasser and D. Hildebrandt, Chem. Eng. J., 166, 662 (2011).
27. C. A. Somensi, E. L. Simionatto, S. L. Bertoli, A. Wisniewski and C. M. Radetski, J. Hazard. Mater., 175, 235 (2010).
28. P. R. Gogate and A. B. Pandit, Adv. Environ. Res., 8, 553 (2004).
29. C. V. Rekhate and J. K. Shrivastava, Ozone Sci. Eng., 42, 492 (2020).
30. J. L. Wang and L. J. Xu, Crit. Rev. Environ. Sci. Technol., 42, 251 (2012).
31. E. Hu, X. Wu, S. Shang, X.-M. Tao, S.-X. Jiang and L. Gan, J. Clean. Prod., 112, 4710 (2016).
32. E. Hu, S. Shang and K.-L. Chiu, Molecules, 24, 2755 (2019).
33. A. Ikhlaq, M. Zafar, F. Javed, A. Yasar, A. Akram, S. Shabbir and F. Qi, Water. Sci. Technol., 84, 1943 (2021).
34. A. Al-Kdasi, A. Idris, K. Saed and C. T. Guan, Global Nest J., 6, 222 (2004).
35. W. Guo, Z. Yang, X. Zhou and Q. Wu, Ifeesm, 341 (2015).
36. J. C. Cardoso, G. G. Bessegato and M. V. B. Zanoni, Water Res., 98, 39 (2016).
37. J. O. Tijani, O. O. Fatoba, G. Madzivire and L. F. Petrik, Water Air Soil Poll., 225 (2014).
38. A. Vogelpohl and S. M. Kim, J. Ind. Eng. Chem., 10, 33 (2004).
39. P. Neta, R. E. Huie and A. B. Ross, J. Phys. Chem. Ref. Dat., 19, 413 (1990).
40. X. Ding, L. Gutierrez, J. P. Croue, M. Li, L. Wang and Y. Wang, Chemosphere, 253, 126655 (2020).
41. J. Kim, T. Zhang, W. Liu, P. Du, J. T. Dobson and C. H. Huang, Environ. Sci. Technol., 53, 13312 (2019).
42. D. Kiejza, U. Kotowska, W. Polińska and J. Karpińska, Sci. Total Environ., 790 (2021).
43. X. Liu, S. He, Y. Yang, B. Yao, Y. Tang, L. Luo, D. Zhi, Z. Wan, L. Wang and Y. Zhou, Environ. Res., 200 (2021).
44. T. Ando, D. G. Cork and T. Kimura, Chem. Lett., 15, 665 (1986).
45. C. Lubello, C. Caretti and R. Gori, Water Sci. Technol., 2, 205 (2002).
46. J. Rivas, O. Gimeno, T. Borralho and F. Beltrán, Chem. Eng. J., 163, 35 (2010).
47. E. V. Rokhina, K. Makarova, E. A. Golovina, H. Van As and J. Virkutyte, Environ. Sci. Technol., 44, 6815 (2010).
48. A. A. Babaei and F. Ghanbari, J. Water Reuse Desal., 6, 484 (2016).
49. S. Wacławek, H. V. Lutze, K. Grübel, V. V. T. Padil, M. Černík and D. D. Dionysiou, Chem. Eng. J., 330, 44 (2017).
50. Z. Siraj, I. M. Maafa, I. Shafiq, N. Shezad, P. Akhter, W. Yang and M. Hussain, Environ. Sci. Pollut. Res., 28, 53340 (2021).
51. P. Akhter, A. Arshad, A. Saleem and M. Hussain, Catalysts, 12, 1331 (2022).
52. J. Saien and F. Jafari, Chapter 1. In: Methods of Persulfate Activation for the Degradation of Pollutants: Fundamentals and Influencing Parameters, Royal Society of Chemistry, London, 59 (2022).
53. M. V. Gomez, R. Caballero, E. Vazquez, A. Moreno, A. de la Hoz and A. Diaaz-Ortiz, Green Chem., 9, 331 (2007).
54. A. Podgoršek, M. Zupan and J. Iskra, Angew. Chem. Int. Ed., 48, 8381 (2009).
55. S. Ye, H.-Y. Yu, D. Wang, J. Zhu and J. Gu, Cellulose, 25, 5139 (2018).
56. I. Arslan and I. A. Balcioglu, Desalination, 130, 61 (2000).
57. S. M. de Arruda, A. G. U. de Souza, K. A. S. Bonilla and A. A. U. de Souza, J. Hazard. Mater., 179, 35 (2010).
58. American Public Health Association (APHA), Standard Methods for the Examination of Water and Wastewater, 21st Edition, American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC (2005).
59. International Organization for Standardization (ISO), Water Quality - Determination of the Inhibitory Effect of Water Samples on the Light Emission of Vibrio fischeri (Luminescent Bacteria Test), Part 3, 11348-3, Method using Freeze-dried Bacteria, International Organization for Standardization, Geneva (2008).
60. Y. Zhou, C. Chen, K. Guo, Z. Wu, L. Wang, Z. Hua and J. Fang, J. Water Res., 185, 116231 (2020).
61. U. von Gunten, Water Res., 37, 1443 (2003).
62. S. S. Abu Amr, H. A. Aziz and M. N. Adlan, Waste Manage., 33, 1434 (2013).
63. Y. Yang, H. Guo, Y. Zhang, Q. Deng and J. Zhang, Water Air Soil Poll., 227 (2016).
64. J. Qiao, S. Luo, P. Yang, W. Jiao and Y. Liu, J. Taiwan Inst. Chem. Eng., 99, 1 (2019).
65. P. Dachipally and S. B. Jonnalagadda, J. Environ. Sci. Heal. A, 46, 887 (2011).
66. C. Lee, H.H. Kim and N.B. Park, Membr. Water Treat., 9, 405 (2018).
67. O. S. Furman, A. L. Teel and R. J. Watts, Environ. Sci. Technol., 44, 6423 (2010).
68. D. Liu, S. Behrens, L. F. Pedersen, D. L. Straus and T. Meinelt, Aquac. Res., 4, 136 (2016).
69. X. W. Ao, J. Eloranta, C. H. Huang, D. Santoro, W. J. Sun, Z. D. Lu and C. Li, Water Res., 188 (2021).
70. D. Yuan, K. Yang, S. Pan, Y. Xiang, S. Tang, L. Huang, M. Sun, X. Zhang, T. Jiao, Q. Zhang and B. Li, Sep. Purif. Technol., 276 (2021).
71. P. Du, W. Liu, H. Cao, H. Zhao and C. H. Huang, Water Res., X, 1 (2018).
72. J. Wang, Z. Wang, Y. Cheng, L. Cao, F. Bai, S. Yue, P. Xie and J. Ma, Water Res., 201 (2021).
73. B. T. Zhang, L. Kuang, Y. Teng, M. Fan and Y. Ma, J. Environ. Sci., 105, 100 (2021).
74. X. Liu, S. He, Y. Yang, B. Yao, Y. Tang, L. Luo, D. Zhi, Z. Wan, L. Wang and Y. Zhou, Environ. Res., 200, 111371 (2021).
75. J. Ma, X. Xia, Y. Ma, Y. Luo and Y. Zhong, Chemosphere, 205, 41 (2018).
76. A. Pérez, T. Poznyak and I. Chairez, In: Textile Wastewater Treatment, Chapter 3, Intech Open, London (2016).
77. S. Zilberg, A. Mizrahi, D. Meyerstein and H. Kornweitz, Phys. Chem. Chem. Phys., 20, 9429 (2018).
78. L. Bilińska, M. Gmurek and S. Ledakowicz, Chem. Eng. J., 306, 550 (2016).
79. F. D. Castro, J. P. Bassin and M. Dezotti, Environ. Sci. Pollut. Res., 24, 6307 (2017).
80. D. Polat, I. Balci and T. A. Özbelge, J. Env. Chem. Eng., 3, 1860 (2015).
81. K. Paździor, J. Wrębiak, A. Klepacz-Smółka, M. Gmurek, L. Bilińska, L. Kos, J. Sójka-Ledakowicz and S. Ledakowicz, J. Environ. Manage., 195, 166 (2017).
82. S. Khuntia, S. K. Majumder and P. Ghosh, J. Env. Chem. Eng., 4, 2250 (2016).
83. N. Inchaurrondo, C. di Luca, G. Žerjav, J. M. Grau, A. Pintar and P. Haure, Catal. Today, 361, 24 (2021)