Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 11, 2022
Revised June 4, 2023
Accepted June 9, 2023
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
A novel approach to measuring fluid saturation using X-ray computed tomography
Abstract
Digital rock analysis using X-ray computer tomography (CT scan) is an ongoing topic for studying the
porous media in geothermal, natural gas, and petroleum industries. This study provides a novel approach to calculating fluid saturation in low permeability cores utilizing X-ray computed tomography. In the present study, synthetic low
permeability cores were used to analyze two-phase saturation at atmospheric pressure and temperature. In the experiments, no dopant was used for visualizing different phases. As a novelty of the paper, PHREEQC geochemical software was employed to verify the saturation of X-ray CT scanning through modeling the geochemical reaction between
aqueous and gaseous phases. This study presents a novel and reliable approach to verify the saturation of X-ray CT
scan through geochemical modeling. The results of this study also prove that using the saturation of mass balance as
the initial condition of the geochemical modeling leads to an excellent agreement between the saturation of CT scan
and geochemical modeling. According to the results obtained, there is a 24% difference between gas saturation in CT
scan and mass balance method, while such discrepancy is only 13% between gas saturation in CT scan and geochemical modeling.
References
2. G. De Josselin de Jong, Eos, Trans. Am. Geophys. Union, 39(1), 67 (1958).
3. Z. Liu and S. M. Moysey, ISRN Geophys., 2012 (2012).
4. M. J. Beran, Summary of dispersion of soluble matter in slowly moving fluids, Harvard University (1955).
5. G. Round, Nature, 188(4747), 305 (1960).
6. E. Deutsch, Nature, 185(4714), 675 (1960).
7. A. Laird and J. Putnam, J. Pet. Technol., 3(10), 275 (1951).
8. E. Chavez Panduro, M. Torsæter, K. Gawel, R. Bjørge, A. Gibaud, Y. Yang, S. Bruns, Y. Zheng, H. Sørensen and D. Breiby, Environ.Sci. Technol., 51(16), 9344 (2017).
9. A. M. Alhammadi, Y. Gao, T. Akai, M. J. Blunt and B. Bijeljic, Fuel, 268, 117018 (2020).
10. Y. Yang, L. Tao, S. Iglauer, S. H. Hejazi, J. Yao, W. Zhang and K. Zhang, Energy Fuels, 34(9), 10762 (2020).
11. L. Salvo, P. Cloetens, E. Maire, S. Zabler, J. J. Blandin, J.-Y. Buffiere, W. Ludwig, E. Boller, D. Bellet and C. Josserond, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 200, 273 (2003).
12. E. Maire and P. J. Withers, Int. Mater. Rev., 59(1), 1 (2014).
13. A. Du Plessis, B. J. Olawuyi, W. P. Boshoff and S. G. Le Roux, Mater. Struct., 49(1-2), 553 (2016). 14. H. Menke, C. Reynolds, M. Andrew, J. P. Nunes, B. Bijeljic and M. Blunt, Chem. Geol., 481, 27 (2018).
15. A. Shabani, M. B. Shahparast and F. Barzegar, Energy Sources Part A-Recovery Util. Environ. Eff., 1 (2020).
16. S. Akin and A. Kovscek, Geological Soc. Publications, 215(1), 23 (2003).
17. F. Wang, Y. Li, X. Tang, J. Chen and W. Gao, J. Nat. Gas Sci. Eng.,28, 215 (2016).
18. P. J. Hicks Jr, R. Narayanan and H. A. Deans, SPE Form. Eval., 9(01), 55 (1994).
19. A. Brancolini, I. Mackenziei, F. Radaelli and F. Rossi, X-ray CT evaluation of poorly consolidated, thin-bedded core. SPWLA 36th Annual Logging Symposium, Society of Petrophysicists and WellLog Analysts (1995).
20. C. Durand, Combined use of X-ray CT scan and local resistivity measurements: A new approach to fluid distribution description in cores, SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers (2003).
21. P. Olivier, L. Cantegrel-Gassiot, J. Laveissiere and N. Guillonneau, Petrophysics, 46(06) (2005).
22. A. J. Alshehri and A. R. Kovscek, An X-ray CT study of multidimensional imbibition in dual porosity carbonates, SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers (2012).
23. H. Kusanagi, N. Watanabe, T. Shimazu, M. Yagi, T. Komai and N. Tsuchiya, X-ray CT based numerical analysis for fluid flows through vuggy carbonate cores, 20th Formation Evaluation Symposium of Japan, Society of Petrophysicists and Well-Log Analysts (2014).
24. L. Moghadasi, A. Guadagnini, F. Inzoli, M. Bartosek and D. Renna, J. Pet. Sci. Eng., 145, 453 (2016). 25. A. Alhosani, A. Scanziani, Q. Lin, Z. Pan, B. Bijeljic and M. J. Blunt, Adv. Water Resour., 134, 103432 (2019).
26. L. Weifeng, L. Qingjie, Z. Zhang, M. Desheng, W. Kangyun and L. Zhenpeng, Pet. Explor. Dev., 39(6), 758 (2012).
27. K. Alshibli and Z. A. Jarrar, Geotechnical Testing J., 44(4) (2020).
28. N. K. Jha, M. Lebedev, S. Iglauer, M. Ali, H. Roshan, A. Barifcani, J. S. Sangwai and M. Sarmadivaleh, J. Colloid Interface Sci., 562, 370 (2020).
29. D. L. Parkhurst and C. Appelo, Description of input and examples for PHREEQC version 3: a computer program for speciation, batchreaction, one-dimensional transport, and inverse geochemical calculations, US Geological Survey (2013).
30. D. L. Parkhurst and C. Appelo, USER’S GUIDE TO PHREEQC (VERSION 2) (Equations on which the program is based), Technical report, US Geological Survey (1999).
31. Y. Zou, C. Zheng and S. Sheikhi, Chem. Geol., 559, 119992 (2020).
32. D.-Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fundam., 15(1), 59 (1976).
33. M. Van Geet, R. Swennen and M. Wevers, Sedimentary Geol.,132(1-2), 25 (2000)