Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 17, 2023
Revised May 24, 2023
Accepted June 1, 2023
- Acknowledgements
- This research has been supported by Yildiz Technical University Scientific Research Projects Coordination Department. Project number: FDK-2020-4071.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Thermotropic liquid crystalline 4-(Nonyloxy) benzoic acid: Phase transition temperatures, thermodynamic characterization, and separation of structural isomers
Abstract
The retention behavior of various organic probes on the 4-(Nonyloxy) benzoic acid liquid crystal, which is
used as a stationary phase, was investigated using the inverse gas chromatography method at infinite dilution. The thermodynamic parameters including the Flory-Huggins parameter, equation-of-state interaction parameter, the mole fraction activity coefficient, the effective exchange energy parameter, and residual thermodynamic parameters were determined in the temperature range of 423.15-433.15 K by using the retention behavior of the probes on the liquid crystal. It was determined from the thermodynamic parameters that all probes were poor solvents for the liquid crystal.
Besides, the results of the 4-(Nonyloxy) benzoic acid liquid crystal was compared with a liquid crystal in the literature,
and the effect of the number of alkyl groups on the liquid crystals on the Flory-Huggins interaction parameter and isomer separation was evaluate
Keywords
References
2. F. P. Caglar, H. Akdas-Kilic, H. Ocak and B. B. Eran, J. Mol. Struct., 1220, 128755 (2020).
3. M. Sargazi, M. R. Linford and M. Kaykhaii, Crit. Rev. Anal. Chem., 49, 243 (2019).
4. D. Andrienko, J. Mol. Liq., 267, 520 (2018).
5. S. Kumar, R. Verma, A. Dwivedi, R. Dhar and A. Tripathi, AIP Conf. Proc., 1953, 050014 (2018).
6. D. Sunil, A. A. A. Salam, R. K. Sinha, L. D. Rodrigues, K. Swamynathan and P. Bhagavath, J. Mol. Liq., 335, 116202 (2021).
7. S. Kumar, R. Verma, R. Dhar and A. Tripathi. Liq. Cryst., 46, 356 (2019).
8. J. F. Gamble, R. N. Davé, S. Kiang, M. M. Leane, M. Tobyn and S. S. Y. Wang, Int. J. Pharm., 445, 39 (2013).
9. W. Wang, Q. Wang, J. Tang, Q. Wang and B. Wang, J. Chem. Thermodyn., 150, 106236 (2020).
10. V. Ugraskan, B. Isik, O. Yazici and F. Cakar, J. Chem. Eng. Data, 65, 1795 (2020).
11. E. Díaz, S. Ordóñez, A. Vega and J. Coca, Thermochim. Acta, 434, 9 (2005).
12. T. V. M. Sreekanth, S. Ramanaiah, P. Reddi Rani and K. S. Reddy, Polym. Bull., 63, 547 (2009).
13. M. Romansky and J. E. Guillet, Polymer, 35, 584 (1994).
14. O. Yazici, Chromatographia, 79, 355 (2016).
15. P. Wu, S. Qi, N. Liu, K. Deng and H. Nie, J. Elastom. Plast., 43, 369 (2011).
16. G. S. Dritsas, K. Karatasos and C. Panayiotou, J. Chromatogr. A, 1216, 8979 (2009).
17. F. Mutelet and J. N. Jaubert, J. Chromatogr. A, 1102, 256 (2006).
18. C. L. Young, Chromatogr. Rev., 10, 129 (1968).
19. A. J. B. Cruickshank, M. L. Windsor and C. L. Young, Proc. Royal Soc. A Math. Phys. Eng. Sci., 295, 271 (1966).
20. J. R. Conder and J. H. Purnell, Trans. Faraday Soc., 64, 1505 (1968).
21. Z. Witkiewicz, J. Chromatogr. A, 466, 37 (1989).
22. Z. Witkiewicz, J. Szulc and R. Dábrowski, J. Chromatogr. A, 315, 145 (1984).
23. E. Ghanem and S. Al-Hariri, Chromatographia, 77, 653 (2014).
24. A. E. Cakar, F. Cakar, H. Ocak, S. Karavelioglu, B. B. Eran and O. Cankurtaran, J. Mol. Struct., 1265, 133379 (2022).
25. I. Erol, F. Cakar, H. Ocak, H. Cankurtaran, O. Cankurtaran, B. Bilgin-Eran and F. Karaman, Liq. Cryst., 43, 142 (2016).
26. O. Cankurtaran and F. Yilmaz, Polymer, 37, 3019 (1996).
27. M. Tejaswi, P. Pardhasaradhi, B. T. P. Madhav, M. C. Rao, D. R. S. Reddy, G. Giridhar and R. K. N. R. Manepalli, Optik, 219, 165151 (2020).
28. A. J. Herbert, Trans. Faraday Soc., 63, 555 (1967).
29. M. K. Kozłowska, U. Domańska, M. Lempert and M. Rogalski, J. Chromatogr. A, 1068, 297 (2005).
30. J. Camacho, E. Díez, G. Ovejero and I. Díaz, J. Appl. Polym. Sci., 128, 481 (2013).
31. I. Gutiérrez, E. Díaz, A. Vega, S. Ordóñez, A. Guerrero-Ruiz, E. Castillejos-López and I. Rodríguez-Ramos, Thermochim. Acta, 602, 36 (2015).
32. N. Karakehya and C. Bilgic, Int. J. Adhes. Adhes., 51, 140 (2014).
33. S. Sun and J. C. Berg, Adv. Colloid Interface Sci., 105, 151 (2003).
34. A. Voelkel, B. Strzemiecka, K. Milczewska and Z. Okulus, Open Chem., 13, 893 (2015).
35. A. L. Revelli, F. Mutelet, J. N. Jaubert, M. Garcia-Martinez, L. M. Sprunger, W. E. Acree and G. A. Baker, J. Chem. Eng. Data, 55, 2434 (2010).
36. A.C. Adiguzel, B. Korkmaz, F. Cakar, O. Cankurtaran and B.F. Senkal, Fluid Phase Equilib., 559, 113467 (2022).
37. D. G. Gray, Prog. Polym. Sci., 5, 1 (1977).
38. T. E. Daubert, Physical and thermodynamic properties of pure chemicals: data compilation, Hemisphere Publication Corporation, New
York (1989).
39. A. F. M. Barton, Chem. Rev., 75, 731 (1975).
40. J. Klein and H. E. Jeberien, Die Makromol. Chem., 181, 1237 (1980).
41. C. P. Callaway, K. Hendrickson, N. Bond, S. M. Lee, P. Sood and S. S. Jang, ChemPhysChem, 19, 1655 (2018).
42. B. Isik, F. Cakar, H. Cankurtaran and O. Cankurtaran, Instrum. Sci. Technol., 50, 1 (2022).
43. K. Schotsch and B.A. Wolf, Die Makromol. Chem., 185, 2169 (1984).
44. F. Cakar and O. Cankurtaran, Polym. Bull., 55, 95 (2005).
45. B. Isik, F. Cakar and O. Cankurtaran, Sep. Sci. Technol., 57, 2843 (2022).
46. D. H. Everett, Trans. Faraday Soc., 61, 1637 (1965).
47. A. J. B. Cruickshank, B. W. Gainey, C. P. Hicks, T. M. Letcher, R. W. Moody and C. L. Young, Trans. Faraday Soc., 65, 1014 (1969).
48. J. E. Guillet, M. Romansky, G. J. Price and R. V. D. Mark, Inverse gas chromatography, characterization of polymers and other materials, American Chemical Society (1989).
49. Y. Yampolskii and N. Belov, Macromolecules, 48, 6751 (2015).
50. S. Mutlu Yanic, F. Cakar, H. Ocak, F. Karaman, O. Cankurtaran and B. Bilgin Eran, J. Chem. Eng. Data, 64, 1007 (2019).
51. M. Królikowski, M. Królikowska, M. Więckowski and A. Piłowski, J. Chem. Therm., 147, 106117 (2020).
52. U. Domańska, M. Karpińska and M. Wlazło, J. Chem. Therm., 121, 112 (2018).
53. O. Cankurtaran and F. Yilmaz, Polym. Int., 41, 307 (1996).
54. D. W. Katja, Theory of gas chromatography, Springer-Verlag (2014).