ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 17, 2023
Revised May 24, 2023
Accepted June 1, 2023
Acknowledgements
This research has been supported by Yildiz Technical University Scientific Research Projects Coordination Department. Project number: FDK-2020-4071.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Thermotropic liquid crystalline 4-(Nonyloxy) benzoic acid: Phase transition temperatures, thermodynamic characterization, and separation of structural isomers

Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Esenler, Istanbul, 34220, Turkey
kurtaran90@yahoo.com, kurtaran@yildiz.edu.tr
Korean Journal of Chemical Engineering, November 2023, 40(11), 2724-2734(11), 10.1007/s11814-023-1508-x
downloadDownload PDF

Abstract

The retention behavior of various organic probes on the 4-(Nonyloxy) benzoic acid liquid crystal, which is used as a stationary phase, was investigated using the inverse gas chromatography method at infinite dilution. The thermodynamic parameters including the Flory-Huggins parameter, equation-of-state interaction parameter, the mole fraction activity coefficient, the effective exchange energy parameter, and residual thermodynamic parameters were determined in the temperature range of 423.15-433.15 K by using the retention behavior of the probes on the liquid crystal. It was determined from the thermodynamic parameters that all probes were poor solvents for the liquid crystal. Besides, the results of the 4-(Nonyloxy) benzoic acid liquid crystal was compared with a liquid crystal in the literature, and the effect of the number of alkyl groups on the liquid crystals on the Flory-Huggins interaction parameter and isomer separation was evaluate

References

1. J. G. An, S. Hina, Y. Yang, M. Xue and Y. Liu, Rev. Adv. Mater. Sci., 44, 398 (2016).
2. F. P. Caglar, H. Akdas-Kilic, H. Ocak and B. B. Eran, J. Mol. Struct., 1220, 128755 (2020).
3. M. Sargazi, M. R. Linford and M. Kaykhaii, Crit. Rev. Anal. Chem., 49, 243 (2019).
4. D. Andrienko, J. Mol. Liq., 267, 520 (2018).
5. S. Kumar, R. Verma, A. Dwivedi, R. Dhar and A. Tripathi, AIP Conf. Proc., 1953, 050014 (2018).
6. D. Sunil, A. A. A. Salam, R. K. Sinha, L. D. Rodrigues, K. Swamynathan and P. Bhagavath, J. Mol. Liq., 335, 116202 (2021).
7. S. Kumar, R. Verma, R. Dhar and A. Tripathi. Liq. Cryst., 46, 356 (2019).
8. J. F. Gamble, R. N. Davé, S. Kiang, M. M. Leane, M. Tobyn and S. S. Y. Wang, Int. J. Pharm., 445, 39 (2013).
9. W. Wang, Q. Wang, J. Tang, Q. Wang and B. Wang, J. Chem. Thermodyn., 150, 106236 (2020).
10. V. Ugraskan, B. Isik, O. Yazici and F. Cakar, J. Chem. Eng. Data, 65, 1795 (2020).
11. E. Díaz, S. Ordóñez, A. Vega and J. Coca, Thermochim. Acta, 434, 9 (2005).
12. T. V. M. Sreekanth, S. Ramanaiah, P. Reddi Rani and K. S. Reddy, Polym. Bull., 63, 547 (2009).
13. M. Romansky and J. E. Guillet, Polymer, 35, 584 (1994).
14. O. Yazici, Chromatographia, 79, 355 (2016).
15. P. Wu, S. Qi, N. Liu, K. Deng and H. Nie, J. Elastom. Plast., 43, 369 (2011).
16. G. S. Dritsas, K. Karatasos and C. Panayiotou, J. Chromatogr. A, 1216, 8979 (2009).
17. F. Mutelet and J. N. Jaubert, J. Chromatogr. A, 1102, 256 (2006).
18. C. L. Young, Chromatogr. Rev., 10, 129 (1968).
19. A. J. B. Cruickshank, M. L. Windsor and C. L. Young, Proc. Royal Soc. A Math. Phys. Eng. Sci., 295, 271 (1966).
20. J. R. Conder and J. H. Purnell, Trans. Faraday Soc., 64, 1505 (1968).
21. Z. Witkiewicz, J. Chromatogr. A, 466, 37 (1989).
22. Z. Witkiewicz, J. Szulc and R. Dábrowski, J. Chromatogr. A, 315, 145 (1984).
23. E. Ghanem and S. Al-Hariri, Chromatographia, 77, 653 (2014).
24. A. E. Cakar, F. Cakar, H. Ocak, S. Karavelioglu, B. B. Eran and O. Cankurtaran, J. Mol. Struct., 1265, 133379 (2022).
25. I. Erol, F. Cakar, H. Ocak, H. Cankurtaran, O. Cankurtaran, B. Bilgin-Eran and F. Karaman, Liq. Cryst., 43, 142 (2016).
26. O. Cankurtaran and F. Yilmaz, Polymer, 37, 3019 (1996).
27. M. Tejaswi, P. Pardhasaradhi, B. T. P. Madhav, M. C. Rao, D. R. S. Reddy, G. Giridhar and R. K. N. R. Manepalli, Optik, 219, 165151 (2020).
28. A. J. Herbert, Trans. Faraday Soc., 63, 555 (1967).
29. M. K. Kozłowska, U. Domańska, M. Lempert and M. Rogalski, J. Chromatogr. A, 1068, 297 (2005).
30. J. Camacho, E. Díez, G. Ovejero and I. Díaz, J. Appl. Polym. Sci., 128, 481 (2013).
31. I. Gutiérrez, E. Díaz, A. Vega, S. Ordóñez, A. Guerrero-Ruiz, E. Castillejos-López and I. Rodríguez-Ramos, Thermochim. Acta, 602, 36 (2015).
32. N. Karakehya and C. Bilgic, Int. J. Adhes. Adhes., 51, 140 (2014).
33. S. Sun and J. C. Berg, Adv. Colloid Interface Sci., 105, 151 (2003).
34. A. Voelkel, B. Strzemiecka, K. Milczewska and Z. Okulus, Open Chem., 13, 893 (2015).
35. A. L. Revelli, F. Mutelet, J. N. Jaubert, M. Garcia-Martinez, L. M. Sprunger, W. E. Acree and G. A. Baker, J. Chem. Eng. Data, 55, 2434 (2010).
36. A.C. Adiguzel, B. Korkmaz, F. Cakar, O. Cankurtaran and B.F. Senkal, Fluid Phase Equilib., 559, 113467 (2022).
37. D. G. Gray, Prog. Polym. Sci., 5, 1 (1977).
38. T. E. Daubert, Physical and thermodynamic properties of pure chemicals: data compilation, Hemisphere Publication Corporation, New
York (1989).
39. A. F. M. Barton, Chem. Rev., 75, 731 (1975).
40. J. Klein and H. E. Jeberien, Die Makromol. Chem., 181, 1237 (1980).
41. C. P. Callaway, K. Hendrickson, N. Bond, S. M. Lee, P. Sood and S. S. Jang, ChemPhysChem, 19, 1655 (2018).
42. B. Isik, F. Cakar, H. Cankurtaran and O. Cankurtaran, Instrum. Sci. Technol., 50, 1 (2022).
43. K. Schotsch and B.A. Wolf, Die Makromol. Chem., 185, 2169 (1984).
44. F. Cakar and O. Cankurtaran, Polym. Bull., 55, 95 (2005).
45. B. Isik, F. Cakar and O. Cankurtaran, Sep. Sci. Technol., 57, 2843 (2022).
46. D. H. Everett, Trans. Faraday Soc., 61, 1637 (1965).
47. A. J. B. Cruickshank, B. W. Gainey, C. P. Hicks, T. M. Letcher, R. W. Moody and C. L. Young, Trans. Faraday Soc., 65, 1014 (1969).
48. J. E. Guillet, M. Romansky, G. J. Price and R. V. D. Mark, Inverse gas chromatography, characterization of polymers and other materials, American Chemical Society (1989).
49. Y. Yampolskii and N. Belov, Macromolecules, 48, 6751 (2015).
50. S. Mutlu Yanic, F. Cakar, H. Ocak, F. Karaman, O. Cankurtaran and B. Bilgin Eran, J. Chem. Eng. Data, 64, 1007 (2019).
51. M. Królikowski, M. Królikowska, M. Więckowski and A. Piłowski, J. Chem. Therm., 147, 106117 (2020).
52. U. Domańska, M. Karpińska and M. Wlazło, J. Chem. Therm., 121, 112 (2018).
53. O. Cankurtaran and F. Yilmaz, Polym. Int., 41, 307 (1996).
54. D. W. Katja, Theory of gas chromatography, Springer-Verlag (2014).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로