Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 21, 2023
Revised June 9, 2023
Accepted July 18, 2023
- Acknowledgements
- The Higher Education Commission of Pakistan’s NRPU program (project #10312) is responsible for funding and supporting this work. The authors are appreciative of the HEC’s kind funding.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Fabrication of highly effective aramid fiber-based polypropylene composite membranes for desalination
Abstract
Water is essential for human survival and existence. Although everyone acknowledges the importance of
water reserves, increasing industrialization and other human activities are drastically reducing the quality of the water.
Polymeric composite membranes provide a dependable answer for removing water pollutants and thus improving its
quality. In this study, polypropylene composite membranes with Aramid support (PM1 membranes) were fabricated
using thermally induced phase separation (TIPS) for water purification and characterized using SEM. Numerous membrane characteristics, including polymer concentration, oil for dissolving polymer, nucleating agent, water immersion
time and organic solvent were all adjusted for the production of extremely efficient PM1 membranes.The PM1-WC
membrane, which was the best membrane, was fabricated by combining 0.1 g PP with soyabean oil, adipic acid as a
nucleating agent, and n-hexane as an organic solvent (PP membranes submerged in water for 40 minutes). In a water
filtering system developed in the lab, the PM1 membranes’ desalination capacities were tested. The desalination capacity of the PP membranes showed a salt rejection of between 70% and 75%.
References
2. E. Obotey Ezugbe and S. Rathilal, Membranes, 10(5), 89 (2020).
3. S. R. Pritchard, M. Phillips and K. Kailasapathy, Food Res. Int., 43(5), 1545 (2010).
4. T. Ahmad and C. Guria, JWPE, 45, 102466 (2022).
5. K. Mustafa, S. Musaddiq, S. Farrukh, S. Ahmad, H. Rasheed and I. Fayyaz, Desalination and Water Treatment, 242, 274 (2021).
6. J. Lee, J. Yoon, J. H. Kim, T. Lee and H. Byun, J. Appl. Polym. Sci.,135(7), 45858 (2018).
7. H. Wan, M. S. Islam, N. J. Briot, M. Schnobrich, L. Pacholik, L. Ormsbee and D. Bhattacharyya, J. Membr. Sci., 594, 117454 (2020).
8. N. E. Badawi, A. R. Ramadan, A. M. K. Esawi and M. El-Morsi, Desalination, 344, 79 (2014).
9. S. Pajević, M. Borišev, N. Nikolić, D. D. Arsenov, M. Župunski, S. Orlović, A. P. Pinto, A. De Varennes, M. E. Lopes and D. M. Teixeira, Phutoremediation: Management of environmewntal contaminants, vol. 3, Springer (2016).
10. L. Yu, Y. Zhang, Y. Wang, H. Zhang and J. Liu, J. Hazard. Mater.,287, 373 (2015).
11. Z. Liu, Z. Cui, Y. Zhang, S. Qin, F. Yan and J. Li, Mater. Lett., 195, 190 (2017).
12. D.-M. Wang and J.-Y. Lai, Curr. Opin. Chem. Eng., 2(2), 229 (2013).
13. T.-Y. Liu, Y. Tong, Z.-H. Liu, H.-H. Lin, Y.-K. Lin, B. Van Der Bruggen and X.-L. Wang, Sep. Purif. Technol., 148, 57 (2015).
14. R. Feng, C. Wang, X. Xu, F. Yang, G. Xu and T. Jiang, J. Membr. Sci., 369(1), 233 (2011).
15. M. Padaki, A. M. Isloor, J. Fernandes and K. N. Prabhu, Desalination, 280(1), 419 (2011).
16. C.-C. Wang, F.-L. Yang, L.-F. Liu, Z.-M. Fu and Y. Xue, J. Membr. Sci., 345(1), 223 (2009).
17. J. Li, Z. Liang, C. Gao, S. Luo, S. Huang, D. Zhang and S. Qin, Crystals, 11(12), 1543 ( 2021).
18. B. M. Ganesh, A. M. Isloor and A. F. Ismail, Desalination, 313, 199 (2013).
19. Z. Xu, J. Zhang, M. Shan, Y. Li, B. Li, J. Niu, B. Zhou and X. Qian, J. Membr. Sci., 458, 1 (2014).
20. Y.-F. Zhao, L.-P. Zhu, Z. Yi, B.-K. Zhu and Y.-Y. Xu, J. Membr. Sci., 440, 40 (2013).
21. L. Qi, Z. Liu, N. Wang and Y. Hu, Appl. Surf. Sci., 456, 95 (2018)