Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 12, 2023
Revised April 4, 2023
Accepted May 1, 2023
- Acknowledgements
- We gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 21861035), The Regional Collaborative Innovation Project of Xinjiang Uyghur Autonomous Region (No. 2017E01005), The University Scientific Research Project of Xinjiang Uyghur Autonomous Region (No. XJEDU2017I001) and the National Natural Science Foundation of China (No. 21162027)
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
The importance of deprotonation of copper oxyhydroxide on its activity towards water oxidation reactions
Abstract
This work reveals a schematic strategy to massively fabricate a series of OH-riched copper oxides (CuOOH), which could be used as highly efficient chemo catalysts for water oxidation reaction (WOR). The results indicate
that the as-prepared CuO-OH exhibited excellent catalytic activity (2,900 mol·h1
·g1
) toward water oxidation, far
higher than the pure CuO formed through calcination. According to the radical capture results and the DRIFTS, XRD,
and Raman spectra data, sulfate radicals were the main active species. Subsequent data of BET, HR-TEM, and FT-IR
spectra reveal that the CuO-OH could activate persulfate ions in the dark to produce sulfate radicals efficiently at room
temperature and promote the sulfate radicals to carry out immediately to hydroxide-mediated deprotonation steps in
WOR. Based on the results above, a mechanism is proposed.
References
2. X. Liu, H. Zheng, Z. Sun, A. Han and P. Du, ACS Catal., 5, 1530 (2015).
3. A. Singh and L. Spiccia, Coord. Chem. Rev., 257, 2607 (2013).
4. M. Tabata, K. Maeda, T. Ishihara, T. Minegishi, T. Takata and K. Domen, J. Phys. Chem. C, 114, 11215 (2010).
5. S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z.-X. Guo and J. Tang, Energy Environ. Sci., 8, 731 (2015).
6. I. Papadas, J. A. Christodoulides, G. Kioseoglou and G. S. Armatas, J. Mater. Chem. A, 3, 1587 (2015).
7. Y. Y. Lu, Y. Y. Zhang, J. Zhang, Y. Shi, Z. Li, Z. C. Feng and C. Li, Appl. Surf. Sci., 370, 312 (2016).
8. J. Huang, X. Du, Y. Feng, Y. Zhao and Y. Ding, Phys. Chem. Chem. Phys.: PCCP, 18, 9918 (2016).
9. P. A. Michaud, M. Panizza, L. Ouattara, T. Diaco, G. Foti and C. Comninellis, J. Appl. Electrochem., 33, 151 (2003).
10. R. Zong and R. P. Thummel, J. Am. Chem. Soc., 127, 12802 (2005).
11. W. C. Ellis, N. D. McDaniel, S. Bernhard and T. J. Collins, J. Am. Chem. Soc., 132, 10990 (2010).
12. T. S. Glikman and I. S. Shcheglova, Kinet. Katal., 9, 461 (1968).
13. N. D. McDaniel, F. J. Coughlin, L. L. Tinker and S. Bernhard, J. Am. Chem. Soc., 130, 210 (2008).
14. M. Z. Ertem and C. J. Cramer, Dalton Trans., 41, 12213 (2012).
15. T. An, H. Yang, G. Li, W. Song, W. J. Cooper and X. Nie, Appl. Catal. B: Environ., 94, 288 (2010).
16. A. Primo, T. Marino, A. Corma, R. Molinari and H. García, J. Am. Chem. Soc., 133, 6930 (2011).
17. H.-y. Liang, Y.-q. Zhang, S.-b. Huang and I. Hussain, Chem. Eng. J. 218, 384 (2013).
18. Y. Zhang, H. P. Tran, I. Hussain, Y. Zhong and S. Huang, Chem. Eng. J., 279, 396 (2015).
19. Y. Zhang, H. P. Tran, X. Du, I. Hussain, S. Huang, S. Zhou and W. Wen, Chem. Eng. J., 308, 1112 (2017).
20. I. Hussain, M. Li, Y. Zhang, S. Huang, W. Hayat, Y. Li, X. Du and G. Liu, J. Environ. Chem. Eng., 5, 3983 (2017).
21. I. Hussain, Y. Zhang and S. Huang, RSC Adv., 4, 3502 (2014).
22. X. Du, Y. Zhang, I. Hussain, S. Huang and W. Huang, Chem. Eng. J., 313, 1023 (2017).
23. J. Yang, H. Liu, W. N. Martens and R. L. Frost, J. Phys. Chem. C, 114, 111 (2010).
24. L. Trotochaud, S. L. Young, J. K. Ranney and S. W. Boettcher, J. Am. Chem. Soc., 136, 6744 (2014).
25. O. Diaz-Morales, D. Ferrus-Suspedra and M. T. M. Koper, Chem. Sci., 7, 2639 (2016).
26. S. R. Alvarado, Y. Guo, T. P. A. Ruberu, A. Bakac and J. Vela, J. Phys. Chem. C, 116, 10382 (2012).
27. J. Zhu, D. Li, H. Chen, X. Yang, L. Lu and X. Wang, Mater. Lett., 58, 3324 (2004).
28. C. Yang, X. Su, J. Wang, X. Cao, S. Wang and L. Zhang, Sens. Actuators B: Chem., 185, 159 (2013).
29. H. R. Naika, K. Lingaraju, K. Manjunath, D. Kumar, G. Nagaraju, D. Suresh and H. Nagabhushana, J. Taibah Univ. Sci., 9, 7 (2015).
30. A. Chauhan, R. Verma, K. M. Batoo, S. Kumari, R. Kalia, R. Kumar, M. Hadi, E. H. Raslan and A. Imran, J. Mater. Res., 36, 1496 (2021).
31. M. I. T.-T. a. M. A. Anderson, Langmuir, 2, 203 (1986).
32. K.-C. Huang, R. A. Couttenye and G. E. Hoag, Chemosphere, 49, 413 (2002).
33. K.-Y. A. Lin, B.-J. Chen and C.-K. Chen, RSC Adv., 6, 92923 (2016).