ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 12, 2023
Revised April 4, 2023
Accepted May 1, 2023
Acknowledgements
We gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 21861035), The Regional Collaborative Innovation Project of Xinjiang Uyghur Autonomous Region (No. 2017E01005), The University Scientific Research Project of Xinjiang Uyghur Autonomous Region (No. XJEDU2017I001) and the National Natural Science Foundation of China (No. 21162027)
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

The importance of deprotonation of copper oxyhydroxide on its activity towards water oxidation reactions

1Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, College of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, China 2Xinjiang Energy Co., LTD 3School of Chemical Engineering, Minhaj University Lahore, Lahore 54000, Punjab, Pakistan 4Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
awangjd@sina.cn
Korean Journal of Chemical Engineering, November 2023, 40(11), 2751-2758(8), 10.1007/s11814-023-1483-2
downloadDownload PDF

Abstract

This work reveals a schematic strategy to massively fabricate a series of OH-riched copper oxides (CuOOH), which could be used as highly efficient chemo catalysts for water oxidation reaction (WOR). The results indicate that the as-prepared CuO-OH exhibited excellent catalytic activity (2,900 mol·h1 ·g1 ) toward water oxidation, far higher than the pure CuO formed through calcination. According to the radical capture results and the DRIFTS, XRD, and Raman spectra data, sulfate radicals were the main active species. Subsequent data of BET, HR-TEM, and FT-IR spectra reveal that the CuO-OH could activate persulfate ions in the dark to produce sulfate radicals efficiently at room temperature and promote the sulfate radicals to carry out immediately to hydroxide-mediated deprotonation steps in WOR. Based on the results above, a mechanism is proposed.

References

1. T. Fang, L.-Z. Fu, L.-L. Zhou and S.-Z. Zhan, Electrochim. Acta, 161, 388 (2015).
2. X. Liu, H. Zheng, Z. Sun, A. Han and P. Du, ACS Catal., 5, 1530 (2015).
3. A. Singh and L. Spiccia, Coord. Chem. Rev., 257, 2607 (2013).
4. M. Tabata, K. Maeda, T. Ishihara, T. Minegishi, T. Takata and K. Domen, J. Phys. Chem. C, 114, 11215 (2010).
5. S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z.-X. Guo and J. Tang, Energy Environ. Sci., 8, 731 (2015).
6. I. Papadas, J. A. Christodoulides, G. Kioseoglou and G. S. Armatas, J. Mater. Chem. A, 3, 1587 (2015).
7. Y. Y. Lu, Y. Y. Zhang, J. Zhang, Y. Shi, Z. Li, Z. C. Feng and C. Li, Appl. Surf. Sci., 370, 312 (2016).
8. J. Huang, X. Du, Y. Feng, Y. Zhao and Y. Ding, Phys. Chem. Chem. Phys.: PCCP, 18, 9918 (2016).
9. P. A. Michaud, M. Panizza, L. Ouattara, T. Diaco, G. Foti and C. Comninellis, J. Appl. Electrochem., 33, 151 (2003).
10. R. Zong and R. P. Thummel, J. Am. Chem. Soc., 127, 12802 (2005).
11. W. C. Ellis, N. D. McDaniel, S. Bernhard and T. J. Collins, J. Am. Chem. Soc., 132, 10990 (2010).
12. T. S. Glikman and I. S. Shcheglova, Kinet. Katal., 9, 461 (1968).
13. N. D. McDaniel, F. J. Coughlin, L. L. Tinker and S. Bernhard, J. Am. Chem. Soc., 130, 210 (2008).
14. M. Z. Ertem and C. J. Cramer, Dalton Trans., 41, 12213 (2012).
15. T. An, H. Yang, G. Li, W. Song, W. J. Cooper and X. Nie, Appl. Catal. B: Environ., 94, 288 (2010).
16. A. Primo, T. Marino, A. Corma, R. Molinari and H. García, J. Am. Chem. Soc., 133, 6930 (2011).
17. H.-y. Liang, Y.-q. Zhang, S.-b. Huang and I. Hussain, Chem. Eng. J. 218, 384 (2013).
18. Y. Zhang, H. P. Tran, I. Hussain, Y. Zhong and S. Huang, Chem. Eng. J., 279, 396 (2015).
19. Y. Zhang, H. P. Tran, X. Du, I. Hussain, S. Huang, S. Zhou and W. Wen, Chem. Eng. J., 308, 1112 (2017).
20. I. Hussain, M. Li, Y. Zhang, S. Huang, W. Hayat, Y. Li, X. Du and G. Liu, J. Environ. Chem. Eng., 5, 3983 (2017).
21. I. Hussain, Y. Zhang and S. Huang, RSC Adv., 4, 3502 (2014).
22. X. Du, Y. Zhang, I. Hussain, S. Huang and W. Huang, Chem. Eng. J., 313, 1023 (2017).
23. J. Yang, H. Liu, W. N. Martens and R. L. Frost, J. Phys. Chem. C, 114, 111 (2010).
24. L. Trotochaud, S. L. Young, J. K. Ranney and S. W. Boettcher, J. Am. Chem. Soc., 136, 6744 (2014).
25. O. Diaz-Morales, D. Ferrus-Suspedra and M. T. M. Koper, Chem. Sci., 7, 2639 (2016).
26. S. R. Alvarado, Y. Guo, T. P. A. Ruberu, A. Bakac and J. Vela, J. Phys. Chem. C, 116, 10382 (2012).
27. J. Zhu, D. Li, H. Chen, X. Yang, L. Lu and X. Wang, Mater. Lett., 58, 3324 (2004).
28. C. Yang, X. Su, J. Wang, X. Cao, S. Wang and L. Zhang, Sens. Actuators B: Chem., 185, 159 (2013).
29. H. R. Naika, K. Lingaraju, K. Manjunath, D. Kumar, G. Nagaraju, D. Suresh and H. Nagabhushana, J. Taibah Univ. Sci., 9, 7 (2015).
30. A. Chauhan, R. Verma, K. M. Batoo, S. Kumari, R. Kalia, R. Kumar, M. Hadi, E. H. Raslan and A. Imran, J. Mater. Res., 36, 1496 (2021).
31. M. I. T.-T. a. M. A. Anderson, Langmuir, 2, 203 (1986).
32. K.-C. Huang, R. A. Couttenye and G. E. Hoag, Chemosphere, 49, 413 (2002).
33. K.-Y. A. Lin, B.-J. Chen and C.-K. Chen, RSC Adv., 6, 92923 (2016).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로