ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 29, 2023
Revised June 16, 2023
Accepted June 22, 2023
Acknowledgements
This research was funded by the National Research Foundation of Korea (NRF) under grants listed as NRF-2021R1A5A6002853 and NRF-2020R1A2C1003885. This work was also supported by the Korea Institute for Advancement of Technology (KIAT) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. P0017363).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Facile antisolvent crystallization-based synthesis of Cu/CoO nanocomposites as catalysts for the electrochemical detection of H2O2

1Department of Chemical Engineering, College of Engineering, Integrated Engineering Major, Kyung Hee University, Yongin 17140, Korea 2School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi 16419, Korea
tkyu@khu.ac.kr
Korean Journal of Chemical Engineering, November 2023, 40(11), 2771-2777(7), 10.1007/s11814-023-1523-y
downloadDownload PDF

Abstract

To synthesize nanocomposites (NCs) comprising two different materials, a multi-step synthetic method is generally required. In this work, we report the synthesis of a heterometallic nanostructure that can be synthesized using a simple antisolvent crystallization-based method. Cu/CoO NCs composed of Cu nanoparticles and CoO nanosheets were formed by reducing mixed salt particles containing both Cu and Co precursors. The synthesized Cu/CoO NCs exhibit higher sensitivity and increased stability compared to conventional catalysts when used for the electrochemical detection of hydrogen peroxide (H2O2).

References

1. M. Nurdin, M. Maulidiyah, A. H. Watoni, A. Armawansa, L. O. A. Salim, Z. Arham and A. A. Umar, Korean J. Chem. Eng., 39, 209 (2022).
2. T. Thiyagarajan, V. Deivasigamani, M. Raj, C. Joseph, T. Dheivasigamani, B. Palanivel and M. Shkir, Korean J. Chem. Eng., 38, 952 (2021).
3. C. V. Khedkar, A. S. Vedpathak, A. V. Dhotre, K. D. Daware, Y. D. Kolekar, S. D. Sartale and S. I. Patil, Chem. Phys. Impact, 6, 100153 (2023).
4. L. Wang, Y. Nemoto and Y. Yamauchi, Am. Chem. Soc., 133, 9674 (2011).
5. M. M. Nejadian, N. M. Mahmoodi, C. Ghotbi and F. Khorasheh, Korean J. Chem. Eng., 39, 2713 (2022).
6. L. X. Zhou, Y. Y. Yang, H. L. Zhu and Y. Q. Zheng, Chem. Pap., 75, 1795 (2021).
7. S. Tabassum, M. Usman, H. A. Al-Lohedan, M. M. Abdullah, M. A. Ghanem, M. S. Al-Sharif and M. S. Ali, RSC Adv., 10, 13126 (2020).
8. A. Z. Warsi, O. K. Hussien, A. Iftikhar, F. Aziz, D. Alhashmialameer,
S. F. Mahmoud and D. I. Saleh, Ceram. Int., 48, 19056 (2022).
9. H. T. T. Vu, V. L. N. Vo and Y. M. Chung, Korean J. Chem. Eng., 38, 1139 (2021).
10. M. R. Karim, T. H. Han, S. Y. Sawant, J. J. Shim, M. Y. Lee, W. K. Kim and M. H. Cho, Korean J. Chem. Eng., 37, 1241 (2020).
11. W. Chen, H. Fan, K. Balakrishnan, Y. Wang, H. Sun, Y. Fan and X. Peng, J. Med. Chem., 61, 9132 (2018).
12. J. Lu, H. Zhang, S. Li, S. Guo, L. Shen, T. Zhou and Y. Zhang, Inorg. Chem., 59, 3152 (2020).
13. C. Liu, S. H. Im and T. Yu, Catalysts, 11, 343 (2021).
14. K. Dhara and D. R. Mahapatra, J. Mater. Sci., 54, 12319 (2019).
15. S. Y. Guvenc, A. Cebi, E. Can-Güven, A. Demir, F. Ghanbari and G. Varank, Korean J. Chem. Eng., 39, 2555 (2022).
16. J. Tang, F. Li, C. Liu, J. Shu, J. Yue, B. Xu and W. Jiang, Anal. Chim. Acta, 1214, 339939 (2022).
17. D. J. Zheng, Y. S. Yang and H. L. Zhu, TrAC Trends Anal. Chem., 118, 625 (2019).
18. W. Li, Y. Yang, C. Ma, Y. Song, C. Hong and X. Qiao, J. Mater. Sci., 55, 13980 (2020).
19. Y. Li, W. Zhu, Q. Kang, L. Yang, Y. Zhang, Y. Wang and Q. Wei, ACS Appl. Mater. Interfaces, 10, 38791 (2018).
20. Y. Li, L. Liu, X. Liu, Y. Ren, K. Xu, N. Zhang and Q. Wei, Biosens. Bioelectron., 163, 112280 (2020).
21. F. Li, J. Feng, Z. Gao, L. Shi, D. Wu, B. Du and Q. Wei, ACS Appl. Mater. Interfaces, 11, 8945 (2019).
22. Y. Dai, X. Zhu, H. Liu, Y. Lin, W. Sun, Y. Sun and Q. Wei, Biosens. Bioelectron., 112, 143 (2018).
23. T. Bian, H. Liu, B. Sun, B. Xiao, Y. Jiang, C. Jin and D. Yang, J. Alloys Compd., 788, 1334 (2019).
24. D. Cheng, T. Wang, G. Zhang, H. Wu and H. Mei, J. Alloys Compd., 819, 153014 (2020).
25. X. Ma, K. L. Tang, K. Lu, B. Yuan, W. Shi, Y. Li and W. Zhao, Sens. Actuators, B, 359, 131592 (2022).
26. R. Ullah, M. A. Rasheed, S. Abbas, K. U. Rehman, A. Shah, K. Ullah and G. Ali, Curr. Appl. Phys., 38, 40 (2022).
27. W. Wu, B. Yu, H. Wu, S. Wang, Q. Xia and Y. Ding, Mater. Sci. Eng. C, 70, 430 (2017).
28. S. E. Kim and A. Muthurasu, Electroanalysis, 33, 1333 (2021).
29. X. Xiao, E. Jung, S. Yoo, T. Lim, J. Kim and T. Yu, Catalysts, 10, 1133 (2020).
30. R. P. Ye, L. Lin, Q. Li, Z. Zhou, T. Wang, C. K. Russell and M. Fan, Catal. Sci. Technol., 8, 3428 (2018).
31. W. Xu, Z. Wang, L. Shang, H. Zhang, A. M. Al-Enizi, Y. Tang and G. Zheng, Chem. Commun., 54, 3867 (2018).
32. W. Sang, C. Wang, X. Zhang, X. Yu, C. Yu, J. Zhao and L. Li, Int. J. Hydrogen Energy, 42, 30691 (2017).
33. H. P. R. Kannapu, V. Vaddeboina and Y. K. Park, Catal. Today, 397, 28 (2022).
34. Q. Feng, W. Dizayee, X. L. Li, D. S. Score, J. R. Neal, A. J. Behan, A. Mokhtari, M. S. Alshammari, M. S. Al-Qahtani, H. J. Blythe, R. W.
Chantrell, S. M. Heald, X. H. Xu, A. M. Fox and G. A. Gehring, New J. Phys. 18, 113040 (2016).
35. A. Ngamaroonchote, Y. Sanguansap, T. Wutikhun and K. KarnOrachai, Microchim. Acta, 187, 1 (2020).
36. Z. M. Sheng, H. Huang, R. L. Niu, Z. W. Han and R. P. Jia, Sens. Actuators, B, 305, 127550 (2020).
37. M. Liu, M. An, J. Xu, T. Liu, L. Wang, Y. Liu and J. Zhang, Appl. Surf. Sci., 542, 148699 (2021).
38. B. Li, L. H. Liu, X. F. Zhang, Y. Gao, Z. P. Deng, L. H. Huo and S. Gao, Anal. Chim. Acta, 1143, 73 (2021).
39. C. Zhao, H. Zhang and J. Zheng, J. Electroanal. Chem., 784, 55 (2017).
40. F. Wang, K. Zhang, S. Li, Q. Zha and Y. Ni, ACS Sustain. Chem. Eng., 10, 10383 (2022).
41. D. Pantea, H. Darmstadt, S. Kaliaguine and C. Roy, Appl. Surf. Sci., 217, 181 (2003).
42. A. Shrivastava and V. B. Gupta, Chron. Young Sci., 2, 21 (2011).
43. B. Patella, M. Buscetta, S. Di Vincenzo, M. Ferraro, G. Aiello, C. Sunseri and C. Cipollina, Sens. Actuators, B, 327, 128901 (2021).
44. M. A. Rashed, M. Faisal, F. A. Harraz, M. Jalalah, M. Alsaiari and S. A. Alsareii, J. Electrochem. Soc., 168, 027512 (2021).
45. L. Kong, Z. Ren, N. Zheng, S. Du, J. Wu, J. Tang and H. Fu, Nano Res., 8, 469 (2015).
46. N. Han, S. Hu, L. Zhang, S. Yi, Z. Zhang, Y. Wang and Y. Gao, Appl. Surf. Sci., 576, 151879 (2022).
47. L. Zhang, F. Yuan, X. Zhang and L. Yang, Chem. Cent. J., 5, 1 (2011).
48. C. Y. Lin and C. T. Chang, Sens. Actuators B, 220, 695 (2015).
49. C. Santhosh, R. Deivasegamani, R. Nivetha, A. Bhatnagar, S.K. Jeong and A. N. Grace, Microchim. Acta, 184, 3223 (2017).
50. H. Xia, J. Li, L. Ma, Q. Liu and J. Wang, J. Alloys Compd., 739, 764 (2018).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로