ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 7, 2023
Revised June 17, 2023
Accepted July 10, 2023
Acknowledgements
The authors are grateful to the National Natural Science Foundation of China (Grant No. 51962018, 52163028), Industrial Support Project of Education Department of Gansu Province (2021CYZC-10), Innovation and Entrepreneurship Talent Project of Lanzhou (Grant No. 2020-RC-2, 2019-RC-2).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Preparation of biomass-based yam solar absorber for enhanced solar evaporation application

1College of Petrochemical Engineering, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China 2CALB Co. Ltd., Changzhou, Jiangsu, China, 213000
1635391909@qq.com, wdliangh@lut.edu.cn
Korean Journal of Chemical Engineering, November 2023, 40(11), 2778-2786(9), 10.1007/s11814-023-1530-z
downloadDownload PDF

Abstract

The solar evaporation system has become a research hotspot in the field of photothermal conversion technology in recent years because of its high photothermal conversion efficiency and practicality of promotion. Biomass solar absorbers have excellent solar absorption properties and high solar-water vapor conversion, but they have the limitations of long feedstock production cycle and high carbonization temperature. As a kind of biomass materials, yam is not only inexpensive, but also has a short production cycle and rich pore structures. Therefore, in this paper, a yam based solar absorber with rich pore structure was prepared, and the photothermal conversion efficiency of the absorber was further investigated. The yam was treated with freeze-dried method and carbonized at different temperatures to obtain yam solar absorbers. Then the thermal stability and porosity of solar absorber was found to gradually rise as the treatment temperature increased. The solar absorption rate of the carbonized yam was close to 90% in the near UVvisible region. Solar-water vapor control experiments with different treatments of the solar absorber of the yam were carried out in simulated solar-driven interface steam generation system (SISGS). An absorber treated at 200 o C in the sun was found to have the best p

References

1. J. Xu, Z. Wang, C. Chang, C. Song, J. Wu, W. Shang, P. Tao and T.Deng, ACS Omega, 4, 16603 (2019).
2. W. Gan, Y. Wang, S. Xiao, R. Gao, Y. Shang, Y. Xie, J. Liu and J. Li, ACS Appl. Mater. Interfaces, 13, 7756 (2021).
3. D. N. Thoai, Q. T. Hoai Ta, T. T. Truong, H. Van Nam and G. Van Vo, J. Clean. Prod., 293, 126122 (2021).
4. L. Chen, P. Xu, K. Kota, S. Kuravi and H. Wang, Chemosphere, 269, 129372 (2021).
5. T. Xu, Y. Xu, J. Wang, H. Lu, W. Liu and J. Wang, Chem. Eng. J., 415, 128893 (2021).
6. X. Wang, Q. Gan, R. Chen, H. Peng, T. Zhang and M. Ye, ACS Sustain. Chem. Eng., 8, 7753 (2020).
7. M. Gao, C. K. Peh, F. L. Meng and G. W. Ho, Small Methods, 5, 1 (2021).
8. M. Gao, C. K. Peh, L. Zhu, G. Yilmaz and G. W. Ho, Adv. Energy Mater., 10, 1 (2020).
9. F. L. Meng, M. Gao, T. Ding, G. Yilmaz, W. L. Ong and G. W. Ho, Adv. Funct. Mater., 30, 1 (2020).
10. Z. Wang, X. Wu, F. He, S. Peng and Y. Li, Adv. Funct. Mater., 31, 1 (2021).
11. S. He, C. Chen, Y. Kuang, R. Mi, Y. Liu, Y. Pei, W. Kong, W. Gan, H. Xie, E. Hitz, C. Jia, X. Chen, A. Gong, J. Liao, J. Li, Z. J. Ren, B. Yang, S. Das and L. Hu, Energy Environ. Sci., 12, 1558 (2019).
12. F. Li, N. Li, S. Wang, L. Qiao, L. Yu, P. Murto and X. Xu, Adv. Funct. Mater., 31, 1 (2021).
13. Y. Shi, O. Ilic, H. A. Atwater and J. R. Greer, Nat. Commun., 12, 1 (2021).
14. A. Vyatskikh, A. Kudo, S. Delalande and J. R. Greer, Mater. Today Commun., 15, 288 (2018).
15. S. Meng, X. Zhao, C. Y. Tang, P. Yu, R. Y. Bao, Z. Y. Liu, M. B. Yang and W. Yang, J. Mater. Chem. A, 8, 2701 (2020).
16. S.S. Das, V.M. Pedireddi, A. Bandopadhyay, P. Saha and S. Chakraborty, Nano Lett., 19, 7191 (2019).
17. J. Chen, B. Li, G. Hu, R. Aleisa, S. Lei, F. Yang, D. Liu, F. Lyu, M. Wang, X. Ge, F. Qian, Q. Zhang and Y. Yin, Nano Lett., 20, 6051 (2020).
18. X. Zhang, Y. Peng, L. Shi and R. Ran, ACS Sustain. Chem. Eng., 8, 18114 (2020).
19. Y. Zhou, T. Ding, M. Gao, K. H. Chan, Y. Cheng, J. He and G. W. Ho, Nano Energy, 77, 105102 (2020).
20. W. Fang, L. Zhao, X. He, H. Chen, W. Li, X. Zeng, X. Chen, Y. Shen and W. Zhang, Renew. Energy, 151, 1067 (2020).
21. L. Chen, M. Xia, J. Du, X. Luo, L. Zhang and A. Li, ChemSusChem, 13, 493 (2020).
22. Y. Lu, X. Wang, D. Fan, H. Yang, H. Xu, H. Min and X. Yang, Sustain. Mater. Technol., 25, e00180 (2020).
23. C. Sheng, N. Yang, Y. Yan, X. Shen, C. Jin, Z. Wang and Q. Sun, Appl. Therm. Eng., 167, 114712 (2020).
24. L. Zhu, L. Sun, H. Zhang, D. Yu, H. Aslan, J. Zhao, Z. Li, M. Yu, F. Besenbacher and Y. Sun, Nano Energy, 57, 842 (2019).
25. Y. Yang, X. Yang, L. Fu, M. Zou, A. Cao, Y. Du, Q. Yuan and C. H. Yan, ACS Energy Lett., 3, 1165 (2018).
26. J. Li, X. Wang, Z. Lin, N. Xu, X. Li, J. Liang, W. Zhao, R. Lin, B. Zhu, G. Liu, L. Zhou, S. Zhu and J. Zhu, Joule, 4, 928 (2020).
27. E. Chiavazzo, M. Morciano, F. Viglino, M. Fasano and P. Asinari, Nat. Sustain., 1, 763 (2018).
28. H. Yao, P. Zhang, C. Yang, Q. Liao, X. Hao, Y. Huang, M. Zhang, X. Wang, T. Lin, H. Cheng, J. Yuan and L. Qu, Energy Environ. Sci., 14, 5330 (2021).
29. J. Jia, W. Liang, H. Sun, Z. Zhu, C. Wang and A. Li, Chem. Eng. J.,361, 999 (2019).
30. J. Yang, Y. Chen, X. Jia, Y. Li, S. Wang and H. Song, ACS Appl.Mater. Interfaces, 12, 47029 (2020).
31. H. Jiang, X. Geng, S. Li, H. Tu, J. Wang, L. Bao, P. Yang and Y.Wan, J. Mater. Sci. Technol., 59, 180 (2020).
32. N. Xu, X. Hu, W. Xu, X. Li, L. Zhou, S. Zhu and J. Zhu, Adv.Mater., 29, 1 (2017).
33. X. Wu, G. Y. Chen, W. Zhang, X. Liu and H. Xu, Adv. Sustain.Syst., 1, 1700046 (2017).
34. B. Liang, J. Lv, G. Wang and T. Noritatsu, Pigment Resin Technol.,46, 172 (2017).
35. C. Brett, Natl. Sci. Rev., 8 (2021), doi:10.1093/nsr/nwab036.
36. M. Zhu, J. Yu, C. Ma, C. Zhang, D. Wu and H. Zhu, Sol. Energy Mater. Sol. Cells, 191, 83 (2019).
37. Z. Zhang, P. Mu, J. He, Z. Zhu, H. Sun, H. Wei, W. Liang and A. Li, ChemSusChem, 12, 426 (2019).
38. T. Y. Ma, S. Dai, M. Jaroniec and S. Z. Qiao, Angew. Chemie - Int. Ed., 53, 7281 (2014).
39. Y. Liu, H. Yang, Y. Wang, C. Ma, S. Luo, Z. Wu, Z. Zhang, W. Li and S. Liu, Chem. Eng. J., 424, 130426 (2021).
40. H. Zhang, Z. Liu, J. Mai, N. Wang, J. Zhong, X. Mai and N. Zhang, Chem. Eng. J., 411, 128482 (2021).
41. A. Wang Jr., The effect of annealing and ultra-high-pressure treatment on structural and functional of three starches with different
polymorphs, Tianjin University pf Science and Technology (2016).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로