Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 10, 2023
Revised July 7, 2023
Accepted July 25, 2023
- Acknowledgements
- This research was partly supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (P0008475, Development Program for Smart Digital Engineering Specialist). (MOTIE) (20207200000070, Development of performance standardization and operation risk estimation for renewable energy-linked alkaline water electrolysis hydrogen production systems using digital twins) and Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Analysis of the total energy consumption through hydrogen compression for the operating pressure optimization of an alkaline water electrolysis system
Abstract
Green hydrogen, produced through the water electrolysis system, needs to be compressed to 200-700 bar
for transportation, storage, and charging. Thus, it is necessary to consider the compression process of the produced
hydrogen. In this study, an alkaline water electrolysis cell model was developed, and a system simulation model was
proposed by integrating it into gPROMS. Total energy consumption and efficiency, according to operational conditions, were analyzed by considering the energy consumption for hydrogen compression to 200 bar through the developed model. The optimal operating pressure demonstrated in the previous study was less than 10 bar when the
compression process was not considered. However, the energy efficiency was highest at 10-30 bar with the energy
required for hydrogen compression. Nonetheless, a high-pressure operation may be subject to material restrictions or
legal regulations. Therefore, material constraints and social regulations should be simultaneously considered to minimize the operating costs and maximize energy efficiency
Keywords
References
2. X. Shao, Y. Zhong, Y. Li and M. Altuntaş, J. Environ. Manage., 296,113229 (2021).
3. E. Agora, The European Power Sector in 2020: Up-to-Date Analysis on the Electricity Transition (2021).
4. U.S. Energy Information Administration, Monthly Energy Review,November (2021).
5. A. Olabi, Energy, 136, 1 (2017).
6. National Renewable Energy Laboratory, Declining Renewable Costs Drive Focus on Energy Storage (2020).
7. N. Khan, S. Dilshad, R. Khalid, A. R. Kalair and N. Abas, Energy Storage, 1(3), e49 (2019).
8. S.B. Walker, U. Mukherjee, M. Fowler and A. Elkamel, Int. J. Hydrog. Energy, 41(19), 7717 (2016).
9. IRENA, Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.5 o C Climate Goal, International Renewable Energy Agency, Abu Dhabi (2020).
10. M. Götz, J. Lefebvre, F. Mörs, A. M. Koch, F. Graf, S. Bajohr, R. Reimert and T. Kolb, Renew. Energy, 85, 1371 (2016).
11. M. David, C. Ocampo-Martínez and R. Sánchez-Peña, J. Energy Storage, 23, 392 (2019).
12. Z. Dobó and Á. B. Palotás, Int. J. Hydrog. Energy, 42(9), 5649 (2017).
13. M. Suermann, T. J. Schmidt and F. N. Büchi, Electrochim. Acta, 211, 989 (2016).
14. O. Ulleberg, Int. J. Hydrog. Energy, 28(1), 21 (2003).
15. M. Hammoudi, C. Henao, K. Agbossou, Y. Dub and M. Doumbia, Int. J. Hydrog. Energy, 37(19), 13895 (2012).
16. C. Henao, K. Agbossou, M. Hammoudi, Y. Dub and A. Cardenas, J. Power Sources, 250, 58 (2014).
17. Z. Abdin, C. Webb and E. Gray, Energy, 138, 316 (2017).
18. H. Kojima, T. Matsuda, H. Matsumoto and T. Tsujimura, J. Int. Counc. Electr. Eng., 8(1), 19 (2018).
19. M. Sánchez, E. Amores, D. Abad, L. Rodríguez and C. ClementeJul, Int. J. Hydrog. Energy, 45(7), 3916 (2020).
20. D. Jang, W. Choi, H. Cho, W. C. Cho, C. H. Kim and S. Kang, J. Power Sources, 506, 230106 (2021).
21. C. Azzaro-Pantel, Cambridge, Massachusetts, US: Academic Press (2018).
22. K. Onda, T. Kyakuno, K. Hattori and K. Ito, J. Power Sources, 132(1-2), 64 (2004).
23. A. Roy, S. Watson and D. Infield, Int. J. Hydrog. Energy, 31(14), 1964 (2006).
24. D. Jang, H. Cho and S. Kang, Appl. Energy, 287, 116554 (2021).
25. M. Minutillo, A. Perna, A. Forcina, S. D. Micco and E. Jannelli, Int. J. Hydrog. Energy, 46(26), 13667 (2021).
26. B. Bensmann, R. Hanke-Rauschenbach, G. Müller-Syring, M. Henel and K. Sundmacher, Appl. Energy, 167, 107 (2016).
27. R. L. Leroy, C. T. Bowen and D. J. Leroy, J. Electrochem. Soc., 127(9), 1954 (1980).
28. D. Henao and C. Christian, Trois-Rivières, Universit du Québec Trois-Rivières (2011).
29. M. P. M. G. Weijs, L. J. J. Janssen and G. J. Visser, J. Appl. Electrochem., 27, 371 (1997).
30. P. Vermeiren, Int. J. Hydrog. Energy, 23(5), 321 (1998).
31. Y. Shin, J. Oh, D. Jang and D. Shin, Comput. Aided Chem. Eng., 49, 1483 (2022).