ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 10, 2023
Revised July 7, 2023
Accepted July 25, 2023
Acknowledgements
This research was partly supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (P0008475, Development Program for Smart Digital Engineering Specialist). (MOTIE) (20207200000070, Development of performance standardization and operation risk estimation for renewable energy-linked alkaline water electrolysis hydrogen production systems using digital twins) and Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Analysis of the total energy consumption through hydrogen compression for the operating pressure optimization of an alkaline water electrolysis system

Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggido 17058, Korea
dongil@mju.ac.kr
Korean Journal of Chemical Engineering, December 2023, 40(12), 2800-2814(15), 10.1007/s11814-023-1540-x
downloadDownload PDF

Abstract

Green hydrogen, produced through the water electrolysis system, needs to be compressed to 200-700 bar for transportation, storage, and charging. Thus, it is necessary to consider the compression process of the produced hydrogen. In this study, an alkaline water electrolysis cell model was developed, and a system simulation model was proposed by integrating it into gPROMS. Total energy consumption and efficiency, according to operational conditions, were analyzed by considering the energy consumption for hydrogen compression to 200 bar through the developed model. The optimal operating pressure demonstrated in the previous study was less than 10 bar when the compression process was not considered. However, the energy efficiency was highest at 10-30 bar with the energy required for hydrogen compression. Nonetheless, a high-pressure operation may be subject to material restrictions or legal regulations. Therefore, material constraints and social regulations should be simultaneously considered to minimize the operating costs and maximize energy efficiency

References

1. IPCC, Global Warming of 1.5 oC. An IPCC Special Report (2018).
2. X. Shao, Y. Zhong, Y. Li and M. Altuntaş, J. Environ. Manage., 296,113229 (2021).
3. E. Agora, The European Power Sector in 2020: Up-to-Date Analysis on the Electricity Transition (2021).
4. U.S. Energy Information Administration, Monthly Energy Review,November (2021).
5. A. Olabi, Energy, 136, 1 (2017).
6. National Renewable Energy Laboratory, Declining Renewable Costs Drive Focus on Energy Storage (2020).
7. N. Khan, S. Dilshad, R. Khalid, A. R. Kalair and N. Abas, Energy Storage, 1(3), e49 (2019).
8. S.B. Walker, U. Mukherjee, M. Fowler and A. Elkamel, Int. J. Hydrog. Energy, 41(19), 7717 (2016).
9. IRENA, Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.5 o C Climate Goal, International Renewable Energy Agency, Abu Dhabi (2020).
10. M. Götz, J. Lefebvre, F. Mörs, A. M. Koch, F. Graf, S. Bajohr, R. Reimert and T. Kolb, Renew. Energy, 85, 1371 (2016).
11. M. David, C. Ocampo-Martínez and R. Sánchez-Peña, J. Energy Storage, 23, 392 (2019).
12. Z. Dobó and Á. B. Palotás, Int. J. Hydrog. Energy, 42(9), 5649 (2017).
13. M. Suermann, T. J. Schmidt and F. N. Büchi, Electrochim. Acta, 211, 989 (2016).
14. O. Ulleberg, Int. J. Hydrog. Energy, 28(1), 21 (2003).
15. M. Hammoudi, C. Henao, K. Agbossou, Y. Dub and M. Doumbia, Int. J. Hydrog. Energy, 37(19), 13895 (2012).
16. C. Henao, K. Agbossou, M. Hammoudi, Y. Dub and A. Cardenas, J. Power Sources, 250, 58 (2014).
17. Z. Abdin, C. Webb and E. Gray, Energy, 138, 316 (2017).
18. H. Kojima, T. Matsuda, H. Matsumoto and T. Tsujimura, J. Int. Counc. Electr. Eng., 8(1), 19 (2018).
19. M. Sánchez, E. Amores, D. Abad, L. Rodríguez and C. ClementeJul, Int. J. Hydrog. Energy, 45(7), 3916 (2020).
20. D. Jang, W. Choi, H. Cho, W. C. Cho, C. H. Kim and S. Kang, J. Power Sources, 506, 230106 (2021).
21. C. Azzaro-Pantel, Cambridge, Massachusetts, US: Academic Press (2018).
22. K. Onda, T. Kyakuno, K. Hattori and K. Ito, J. Power Sources, 132(1-2), 64 (2004).
23. A. Roy, S. Watson and D. Infield, Int. J. Hydrog. Energy, 31(14), 1964 (2006).
24. D. Jang, H. Cho and S. Kang, Appl. Energy, 287, 116554 (2021).
25. M. Minutillo, A. Perna, A. Forcina, S. D. Micco and E. Jannelli, Int. J. Hydrog. Energy, 46(26), 13667 (2021).
26. B. Bensmann, R. Hanke-Rauschenbach, G. Müller-Syring, M. Henel and K. Sundmacher, Appl. Energy, 167, 107 (2016).
27. R. L. Leroy, C. T. Bowen and D. J. Leroy, J. Electrochem. Soc., 127(9), 1954 (1980).
28. D. Henao and C. Christian, Trois-Rivières, Universit du Québec Trois-Rivières (2011).
29. M. P. M. G. Weijs, L. J. J. Janssen and G. J. Visser, J. Appl. Electrochem., 27, 371 (1997).
30. P. Vermeiren, Int. J. Hydrog. Energy, 23(5), 321 (1998).
31. Y. Shin, J. Oh, D. Jang and D. Shin, Comput. Aided Chem. Eng., 49, 1483 (2022).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로