Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 4, 2023
Revised September 4, 2023
Accepted September 5, 2023
- Acknowledgements
- This work was performed under the financial support from the ERC Center (NRF2022R1A5A1033719) and the Lotte ChemicalKAIST Carbon Neutrality R&D Center
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Elevated energy efficiency and reduced CO2 emissions from integrated reaction and separation for the concurrent production of ethers
Abstract
This study aimed to design energy-efficient systems for reactive distillation to simultaneously produce
methyl tert-butyl ether (MTBE) and ethyl tert-butyl ether (ETBE) from mixed feeds of methanol and ethanol. In this
work, two new designs are proposed. One is the individual production of each ether, involving two reactive distillation
columns after feed alcohol separation, while the other for the co-production of both ethers in a single reactive distillation column without the alcohol separation. Rigorous simulations of the two proposed systems were conducted with
varying ratios of the two alcohols in actual process streams. When the methanol feeding was dominant, the co-production system exhibited better performance than the individual ether production system. This was due to the lower temperatures inside the alcohol separation column, resulting in a lower relative volatility of methanol and increasing the
heat duty in the alcohol separation column. However, when the amount of ethanol was higher than that of methanol,
the individual production system outperformed the co-production system. This was attributed to the unfavorable reaction equilibrium of ETBE production, leading to a high internal flowrate in the co-production reactive distillation column. The external heat integration of each design can bring further reduction in energy consumption and CO2
emissions, but the results follow the same dependence on the feed alcohol ratio.
Keywords
References
2. A. Iqbal, M. A. Qyyum, Ojasvi, A. S. Nizami, S. A. Ahmad and M. Lee, Chem. Eng. Process.: Process Intensif., 163, 108376 (2021).
3. H. Lee, C. Seo, M. Lee and J. W. Lee, AIChE J., 68(1), e17476 (2022).
4. F. Qasim, J. S. Shin and S. J. Park, Korean J. Chem. Eng., 35, 1185 (2018).
5. J. Park, W. Lee and J. W. Lee, Korean J. Chem. Eng., 40, 46 (2023).
6. C. Seo, H. Lee, M. Lee and J. W. Lee, Korean J. Chem. Eng., 39, 263 (2022).
7. J. W. Lee, S. Hauan, K. M. Len and A. W. Westerberg, Proc. R. Soc. Lond. A., 456, 1953 (2000).
8. J. W. Lee, S. Hauan, K. M. Lien and A. W. Westerberg, Proc. R. Soc. Lond. A., 456, 1965 (2000).
9. M. Errico, C. Madeddu, M. Flemming Bindseil, S. Dall Madsen, S. Braekevelt and M. S. Camilleri-Rumbau, Chem. Eng. Process.: Process Intensif., 157, 108110 (2020).
10. J. W. Lee, S. Hauan and A. W. Westerberg, Ind. Eng. Chem. Res., 39, 1061 (2000).
11. F. J. Novita, H. Y. Lee and M. Lee, Korean J. Chem. Eng., 35, 926 (2018).
12. H. Lee, W. Jang and J. W. Lee, Korean J. Chem. Eng., 36, 954 (2019).
13. H. Mo, H. Lee, W. Jang, K. Namgung and J. W. Lee, Korean J. Chem. Eng., 38, 195 (2021).
14. V. D. Talnikar and Y. S. Mahajan, Korean J. Chem. Eng., 31, 1720 (2014).
15. S. H. Lee, W. Y. Choi, K. J. Kim, D. J. Chang and J. W. Lee, Chem. Eng. Process.: Process Intensif., 123, 249 (2018).
16. S. Ghosh and S. Srinivas, Korean J. Chem. Eng., 39, 2291 (2022).
17. R. Muthia, A. G. T. Reijneveld, A. G. J. van der Ham, A. J. B. ten Kate, G. Bargeman, S. R. A. Kersten and A. A. Kiss, Chem. Eng. Process.: Process Intensif., 128, 263 (2018).
18. K. Namgung, H. Lee, W. Jang, H. Mo and J. W. Lee, Chem. Eng. Process.: Process Intensif., 154, 108048 (2020).
19. J. W. Lee and A. W. Westerberg, AIChE J, 47, 1333 (2001).
20. M. Carrera-Rodríguez, J. G. Segovia-Hernández and A. Bonilla-Petriciolet, Ind. Eng. Chem. Res., 50, 10730 (2011).
21. K. Huang, S. J. Wang and W. Ding, Chem. Eng. Sci., 63, 2119 (2008).
22. A. Norkobilov, D. Gorri and I. Ortiz, Chem. Eng. Process.: Process Intensif., 122, 434 (2017).
23. K. Zhou, Q.G. Zhang, G.L. Han, A.M. Zhu and Q.L. Liu, J. Membr. Sci., 448, 93 (2013).
24. M. Dahmen and W. Marquardt, Energy Fuels, 30, 1109 (2016).
25. R. K. Saluja, V. Kumar, R. Sham, R. Kaushal and F. Inambao,
Advancement in oxygenated fuels for sustainable development, Elsevier (2023).
26. Y. Chen, Q. Zhang, K. Liu, S. Zhang, X. Zhang and H. Liu, Process Saf. Environ. Prot., 171, 607 (2023).
27. K. Atsonios, K. D. Panopoulos and E. Kakaras, Int. J. Hydrogen Energy, 41, 792 (2016).
28. R. L. Maglinao and B. B. He, Ind. Eng. Chem. Res., 50, 6028 (2011).
29. W. Jang, K. Namgung, H. Lee, H. Mo and J. W. Lee, Ind. Eng. Chem. Res., 59, 1966 (2020).
30. Y. C. Wu, H. Y. Lee, C. Y. Tsai, H. P. Huang and I. L. Chien, Comput. Chem. Eng., 57, 63 (2013).
31. A. Rehfinger and U. Hoffmann, Chem. Eng. Sci., 45, 1605 (1990).
32. Y. Tian, I. Pappas, B. Burnak, J. Katz and E. N. Pistikopoulos, Chem. Eng. Sci., 230, 116232 (2021).
33. R. Khaledi and B. R. Young, Ind. Eng. Chem. Res., 44, 3134, (2005).
34. R. Khaledi and P. R. Bishnoi, Ind. Eng. Chem. Res., 45, 6007 (2006).
35. J. B. Rasmussen, S. S. Mansouri, X. Zhang, J. Abildskov and J. Kjøbsted Huusom, Chem. Eng. Process.: Process Intensif., 167, 108843 (2021).
36. A. Iftakher, D. A. Liñán, S. S. Mansouri, A. Nahid, M. M. F. Hasan,
M. A. A. S. Choudhury, L. A. Ricardez-Sandoval and J. H. Lee, Comput. Chem. Eng., 164, 107869 (2022).
37. B. H. Bisowarno, Y. C. Tian and M. O. Tadé, Chem. Eng. J., 99, 35 (2004).
38. C. Thiel, K. Sundmacher and U. Hoffmann, Chem. Eng. J., 66, 181 (1997).
39. H. Lee, H. Mo, K. Namgung, W. Jang and J. W. Lee, Ind. Eng. Chem. Res., 59, 14398 (2020).
40. Z. Guo, M. Ghufran and J. W. Lee, AIChE J, 49, 3161 (2003).
41. J. Chin, H. J. Kattukaran and J. W. Lee, Ind. Eng. Chem. Res., 43, 7092 (2004).
42. Y. Xu, J. Li, Q. Ye and Y. Li, Sep. Purif. Technol., 277, 119498 (2021).
43. X. You, I. Rodriguez-Donis and V. Gerbaud, Appl. Energy, 166, 128 (2016).
44. D. Jantes-Jaramillo, J. G. Segovia-Hernández and S. Hernández, Chem. Eng. Technol., 31, 1462 (2008).
45. M. A. Gadalla, Z. Olujic, P. J. Jansens, M. Jobson and R. Smith, Environ. Sci. Technol., 39, 6860 (2005).
46. M. Gadalla, Ž. Olujić, M. Jobson and R. Smith, Energy, 31, 2398 (2006).
47. M. Lee, H. Lee, C. Seo, J. Lee and J. W. Lee, Sep. Purif. Technol., 287, 120598 (2022).
48. A. Anbreen, N. Ramzan and M. Faheem, Chem. Eng. Process.: Process Intensif., 170, 108695 (2022).
49. Y. Zhuang, Y. Xing, L. Zhang, L. Liu, J. Du and S. Shen, Comput. Chem. Eng., 152, 107388 (2021).