Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 12, 2023
Revised June 25, 2023
Accepted July 10, 2023
- Acknowledgements
- This study was supported by the Technology Innovation Program (20007171, Development of artificial graphite from cokes and binder/coating pitch for anode materials) funded by the Ministry of Trade, Industry, and Energy (MOTIE, Korea) and by the Technology Innovation Program (20006696, Development of isotropic graphite block for semiconductor process) funded by the Ministry of Trade, Industry, and Energy (MOTIE, Korea).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Optimization of the molecular weight range of coating pitch and its effect on graphite anodes for lithium-ion batteries
Abstract
This study aimed to optimize the molecular weight range of coating pitch to enhance the electrochemical
performance of graphite-based anodes used in lithium-ion batteries by understanding the characteristics of the coating
pitch. The coating pitch was divided into four fractions based on its solubility in hexane, acetone, toluene, and nmethyl-2-pyrrolidone (NMP). These four fractions were estimated based on the thickness and homogeneity of the
coated surfaces. The lighter fractions of pitch, such as hexane and acetone, assisted in forming a homogeneous surface
by decreasing the viscosity during carbonization. Heavy fractions, such as toluene and NMP, were the main components of the coating. They improved the rate performance of the anode by forming an isotropic layer, which increased
the number of lithium-ion intercalation sites. However, thick surfaces increased the charge-transfer resistance because
of the increased diffusion path lengths of lithium ions. The pitch molecular weight fractions of 128-768, 768-1152, and
1,152-1,480 m/z should be controlled to 70-84.49, 11.20-18.21, and 3.35-5.15%, respectively. Furthermore, the results of
this study can be applied to optimize the coating properties for other anode materials, such as silicon, at a controllable
pitch coating thickness according to the molecular weight.
References
2. M. S. Javed, A. Mateen, S. Ali, X. Zhang, I. Hussain, M. Imran, S. S. A. Shah and W. Han, Small, 18, 2201989 (2022).
3. Q. Zhang, S. Wang, Y. Liu, M. Wang, R. Chen, Z. Zhu, X. Qiu, S. Xu and T. Wei, Energy Technol., 11, 2201438 (2023).
4. J. Lu, Z. Wang, Q. Zhang, C. Sun, Y. Zhou, S. Wang, X. Qiu, S. Xu, R. Chen and T. Wei, Chin. J. Chem. Eng., 60, 80 (2023).
5. X. Zhang, Y. Tang, F. Zhang and C.-S. Lee, Adv. Energy Mater., 6, 1502588 (2016).
6. S. Mu, Q. Liu, P. Kidkhunthod, X. Zhou, W. Wang and Y. Tang, Natl. Sci. Rev., 8, nwaa178 (2021).
7. C. Ma, Y. Zhao, J. Li, Y. Song, J. Shi, Q. Guo and L. Liu, Carbon, 64, 553 (2013).
8. Y. Hai, W. Cui, Y. Lin, P. Han, H. Chen, Z. Zhu, C. Li, B. Yang, C. Zhu and J. Xu, Appl. Surf. Sci., 484, 726 (2019).
9. L. Zhao, B. Ding, X.-Y. Qin, Z. Wang, W. Lv, Y.-B. He, Q.-H. Yang and F. Kang, Adv. Mater., 34, 2106704 (2022).
10. W. He, T. Zhang, J. Jiang, C. Chen, Y. Zhang, N. Liu, H. Dou and X. Zhang, ACS Appl. Energ. Mater., 3, 4394 (2020).
11. Y. Yang, W. Shi, R. Zhang, C. Luan, Q. Zeng, C. Wang, S. Li, Z. Huang, H. Liao and X. Ji, Electrochim. Acta, 204, 100 (2016).
12. T. Tsumura, A. Katanosaka, I. Souma, T. Ono, Y. Aihara, J. Kuratomi and M. Inagaki, Solid State Ion., 135, 209 (2000).
13. T. Placke, V. Siozios, R. Schmitz, S. F. Lux, P. Bieker, C. Colle, H.-W. Meyer, S. Passerini and M. Winter, J. Power Sources, 200, 83 (2012).
14. H.-H. Chen, V. Goel, M. J. Namkoong, M. Wied, S. Müller, V.Wood, J. Sakamoto, K. Thornton and N. P. Dasqupta, Adv. Energy Mater., 11, 2003336 (2021).
15. Y. Shen, X. Shen, M. Yang, J. Qian, Y. Cao, H. Yang, Y. Luo and X.Ai, Adv. Funct. Mater., 31, 2101181 (2021).
16. Y. Mu, M. Han, J. Li, J. Liang and J. Yu, Carbon, 173, 477 (2021).
17. H. Yu, Y. Chen, W. Wei, X. Ji and L. Chen, ACS Nano, 16, 9736 (2022).
18. M. Yoshio, H. Wang, K. Fukuda, Y. Hara and Y. Adachi, J. Electrochem. Soc., 147, 1245 (2000).
19. H.-Y. Lee, J.-K. Baek, S.-M. Lee, H.-K. Park, K.-Y. Lee and M.-H. Kim, J. Power Sources, 128, 61 (2004).
20. Y. Gao, J. Zhang, Y. Chen and C. Wang, Surf. Interfaces, 24, 101089 (2021).
21. H. Wang, Y. Chen, H. Yu, W. Liu, G. Kuang, L. Mei, Z. Wu, W. Wei, X. Ji, B. Qu and L. Chen, Adv. Funct. Mater., 32, 2205600 (2022).
22. R. C. Shurtz, J. D. Engerer and J. C. Hewson, J. Electrochem. Soc., 165, A3891 (2018).
23. F. Béguin, F. Chevallier, C. Vix-Guterl, S. Saadallah, V. Bertagna, J. N. Rouzaud and E. Frackowiak, Carbon, 43, 2160 (2005).
24. Y.F. Zhou, S. Xie and C.H. Chen, Electrochim. Acta, 50, 4728 (2005).
25. C. Wang, H. Zhao, J. Wang, J. Wang and P. Lv, Ionics, 19, 221 (2012).
26. B.-H. Kim, J.-H. Kim, J.-G. Kim, M.-J. Bae, J.-S. Im, C.-W. Lee and S. Kim, J. Ind. Eng. Chem. 41, 1 (2016).
27. J. G. Kim, J. H. Kim, B.-J. Song, C. W. Lee and J. S. Im, J. Ind. Eng. Chem., 36, 293 (2016).
28. Y. J. Han, J. U. Hwang, K. S. Kim, J. H. Kim, J. D. Lee and J. S. Im, J. Ind. Eng. Chem., 73, 241 (2019).
29. B. C. Bai, J. G. Kim, J. H. Kim, C. W. Lee, Y.-S. Lee and J. S. Im, Carbon Lett., 25, 78 (2018).
30. B.-H. Kim, J.-H. Kim, J.-G. Kim, J. S. Im, C. W. Lee and S. Kim, J. Ind. Eng. Chem., 45, 99 (2017).
31. T. K. Whang, J. H. Kim, J. S. Im and S. C. Kang, Appl. Chem. Eng., 32(1), 83 (2021).
32. W. F. Edwards, L. Jin and M. C. Thies, Carbon, 41, 2761 (2003). 33. J. H. Kim, Y. J. Choi, J. S. Im, A. Jo, K. B. Lee and B. C. Bai, J. Ind.Eng. Chem., 88, 251 (2020).
34. W. Zhang, J. T. Andersson, H. J. Räder and K. Müllen, Carbon, 95, 672 (2015).
35. Y.-J. Han, J. Kim, J.-S. Yeo, J. C. An, I.-P. Hong, K. Nakabayashi, J.Miyawaki, J.-D. Jun and S.-H. Yoon, Carbon, 94, 432 (2015).
36. S.-H. Choi, G. Nam, S. Chae, D. Kim, N. Kim, W. S. Kim, J. Ma, J.
Sung, S. M. Han, M. Ko, H.-W. Lee and J. Cho, Adv. Energy Mater.,9, 1803121 (2019).
37. L. Chan, Q. Qu, L. Zhang, M. Shen, L. Zhang and H. Zheng, Electrochim. Acta, 105, 378 (2013).
38. R. Yazami and Y. F. Reynier, Electrochim. Acta, 47, 1217 (2002).
39. X. Gong, J. Zheng, Y. Zheng, S. Cao, H. Wen, B. Lin and Y. Sun,Electrochim. Acta, 356, 136858 (2020).
40. J. R. Dahn, T. Zheng, Y. Liu and J. S. Xue, Science, 270, 590 (1995).
41. W. Jiang, G. Ni, P. Zuo, S. Qu, Y. Li, H. Niu and W. Shen, CarbonLett., 29, 505 (2019).