ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 12, 2023
Revised June 25, 2023
Accepted July 10, 2023
Acknowledgements
This study was supported by the Technology Innovation Program (20007171, Development of artificial graphite from cokes and binder/coating pitch for anode materials) funded by the Ministry of Trade, Industry, and Energy (MOTIE, Korea) and by the Technology Innovation Program (20006696, Development of isotropic graphite block for semiconductor process) funded by the Ministry of Trade, Industry, and Energy (MOTIE, Korea).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Optimization of the molecular weight range of coating pitch and its effect on graphite anodes for lithium-ion batteries

1C1 Gas & Carbon Convergent Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea 2Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea 3Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Korea
jsim@krict.re.kr
Korean Journal of Chemical Engineering, December 2023, 40(12), 2839-2846(8), 10.1007/s11814-023-1529-5
downloadDownload PDF

Abstract

This study aimed to optimize the molecular weight range of coating pitch to enhance the electrochemical performance of graphite-based anodes used in lithium-ion batteries by understanding the characteristics of the coating pitch. The coating pitch was divided into four fractions based on its solubility in hexane, acetone, toluene, and nmethyl-2-pyrrolidone (NMP). These four fractions were estimated based on the thickness and homogeneity of the coated surfaces. The lighter fractions of pitch, such as hexane and acetone, assisted in forming a homogeneous surface by decreasing the viscosity during carbonization. Heavy fractions, such as toluene and NMP, were the main components of the coating. They improved the rate performance of the anode by forming an isotropic layer, which increased the number of lithium-ion intercalation sites. However, thick surfaces increased the charge-transfer resistance because of the increased diffusion path lengths of lithium ions. The pitch molecular weight fractions of 128-768, 768-1152, and 1,152-1,480 m/z should be controlled to 70-84.49, 11.20-18.21, and 3.35-5.15%, respectively. Furthermore, the results of this study can be applied to optimize the coating properties for other anode materials, such as silicon, at a controllable pitch coating thickness according to the molecular weight.

References

1. M. S. Javed, A. Mateen, I. Hussain, A. Ahmad, M. Mubashir, S. Khan, M. A. Assiri, S. M. Eldin, S. S. A. Shah and W. Han, Energy Storage Mater., 53, 827 (2022).
2. M. S. Javed, A. Mateen, S. Ali, X. Zhang, I. Hussain, M. Imran, S. S. A. Shah and W. Han, Small, 18, 2201989 (2022).
3. Q. Zhang, S. Wang, Y. Liu, M. Wang, R. Chen, Z. Zhu, X. Qiu, S. Xu and T. Wei, Energy Technol., 11, 2201438 (2023).
4. J. Lu, Z. Wang, Q. Zhang, C. Sun, Y. Zhou, S. Wang, X. Qiu, S. Xu, R. Chen and T. Wei, Chin. J. Chem. Eng., 60, 80 (2023).
5. X. Zhang, Y. Tang, F. Zhang and C.-S. Lee, Adv. Energy Mater., 6, 1502588 (2016).
6. S. Mu, Q. Liu, P. Kidkhunthod, X. Zhou, W. Wang and Y. Tang, Natl. Sci. Rev., 8, nwaa178 (2021).
7. C. Ma, Y. Zhao, J. Li, Y. Song, J. Shi, Q. Guo and L. Liu, Carbon, 64, 553 (2013).
8. Y. Hai, W. Cui, Y. Lin, P. Han, H. Chen, Z. Zhu, C. Li, B. Yang, C. Zhu and J. Xu, Appl. Surf. Sci., 484, 726 (2019).
9. L. Zhao, B. Ding, X.-Y. Qin, Z. Wang, W. Lv, Y.-B. He, Q.-H. Yang and F. Kang, Adv. Mater., 34, 2106704 (2022).
10. W. He, T. Zhang, J. Jiang, C. Chen, Y. Zhang, N. Liu, H. Dou and X. Zhang, ACS Appl. Energ. Mater., 3, 4394 (2020).
11. Y. Yang, W. Shi, R. Zhang, C. Luan, Q. Zeng, C. Wang, S. Li, Z. Huang, H. Liao and X. Ji, Electrochim. Acta, 204, 100 (2016).
12. T. Tsumura, A. Katanosaka, I. Souma, T. Ono, Y. Aihara, J. Kuratomi and M. Inagaki, Solid State Ion., 135, 209 (2000).
13. T. Placke, V. Siozios, R. Schmitz, S. F. Lux, P. Bieker, C. Colle, H.-W. Meyer, S. Passerini and M. Winter, J. Power Sources, 200, 83 (2012).
14. H.-H. Chen, V. Goel, M. J. Namkoong, M. Wied, S. Müller, V.Wood, J. Sakamoto, K. Thornton and N. P. Dasqupta, Adv. Energy Mater., 11, 2003336 (2021).
15. Y. Shen, X. Shen, M. Yang, J. Qian, Y. Cao, H. Yang, Y. Luo and X.Ai, Adv. Funct. Mater., 31, 2101181 (2021).
16. Y. Mu, M. Han, J. Li, J. Liang and J. Yu, Carbon, 173, 477 (2021).
17. H. Yu, Y. Chen, W. Wei, X. Ji and L. Chen, ACS Nano, 16, 9736 (2022).
18. M. Yoshio, H. Wang, K. Fukuda, Y. Hara and Y. Adachi, J. Electrochem. Soc., 147, 1245 (2000).
19. H.-Y. Lee, J.-K. Baek, S.-M. Lee, H.-K. Park, K.-Y. Lee and M.-H. Kim, J. Power Sources, 128, 61 (2004).
20. Y. Gao, J. Zhang, Y. Chen and C. Wang, Surf. Interfaces, 24, 101089 (2021).
21. H. Wang, Y. Chen, H. Yu, W. Liu, G. Kuang, L. Mei, Z. Wu, W. Wei, X. Ji, B. Qu and L. Chen, Adv. Funct. Mater., 32, 2205600 (2022).
22. R. C. Shurtz, J. D. Engerer and J. C. Hewson, J. Electrochem. Soc., 165, A3891 (2018).
23. F. Béguin, F. Chevallier, C. Vix-Guterl, S. Saadallah, V. Bertagna, J. N. Rouzaud and E. Frackowiak, Carbon, 43, 2160 (2005).
24. Y.F. Zhou, S. Xie and C.H. Chen, Electrochim. Acta, 50, 4728 (2005).
25. C. Wang, H. Zhao, J. Wang, J. Wang and P. Lv, Ionics, 19, 221 (2012).
26. B.-H. Kim, J.-H. Kim, J.-G. Kim, M.-J. Bae, J.-S. Im, C.-W. Lee and S. Kim, J. Ind. Eng. Chem. 41, 1 (2016).
27. J. G. Kim, J. H. Kim, B.-J. Song, C. W. Lee and J. S. Im, J. Ind. Eng. Chem., 36, 293 (2016).
28. Y. J. Han, J. U. Hwang, K. S. Kim, J. H. Kim, J. D. Lee and J. S. Im, J. Ind. Eng. Chem., 73, 241 (2019).
29. B. C. Bai, J. G. Kim, J. H. Kim, C. W. Lee, Y.-S. Lee and J. S. Im, Carbon Lett., 25, 78 (2018).
30. B.-H. Kim, J.-H. Kim, J.-G. Kim, J. S. Im, C. W. Lee and S. Kim, J. Ind. Eng. Chem., 45, 99 (2017).
31. T. K. Whang, J. H. Kim, J. S. Im and S. C. Kang, Appl. Chem. Eng., 32(1), 83 (2021).
32. W. F. Edwards, L. Jin and M. C. Thies, Carbon, 41, 2761 (2003). 33. J. H. Kim, Y. J. Choi, J. S. Im, A. Jo, K. B. Lee and B. C. Bai, J. Ind.Eng. Chem., 88, 251 (2020).
34. W. Zhang, J. T. Andersson, H. J. Räder and K. Müllen, Carbon, 95, 672 (2015).
35. Y.-J. Han, J. Kim, J.-S. Yeo, J. C. An, I.-P. Hong, K. Nakabayashi, J.Miyawaki, J.-D. Jun and S.-H. Yoon, Carbon, 94, 432 (2015).
36. S.-H. Choi, G. Nam, S. Chae, D. Kim, N. Kim, W. S. Kim, J. Ma, J.
Sung, S. M. Han, M. Ko, H.-W. Lee and J. Cho, Adv. Energy Mater.,9, 1803121 (2019).
37. L. Chan, Q. Qu, L. Zhang, M. Shen, L. Zhang and H. Zheng, Electrochim. Acta, 105, 378 (2013).
38. R. Yazami and Y. F. Reynier, Electrochim. Acta, 47, 1217 (2002).
39. X. Gong, J. Zheng, Y. Zheng, S. Cao, H. Wen, B. Lin and Y. Sun,Electrochim. Acta, 356, 136858 (2020).
40. J. R. Dahn, T. Zheng, Y. Liu and J. S. Xue, Science, 270, 590 (1995).
41. W. Jiang, G. Ni, P. Zuo, S. Qu, Y. Li, H. Niu and W. Shen, CarbonLett., 29, 505 (2019).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로