ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 1, 2023
Revised August 15, 2023
Accepted August 18, 2023
Acknowledgements
This research was supported by the National Research Foundation of Korea (NRF) grant (2021M3H4A1A02042952) and the Ministry of Education (NRF2021R1A6A1A03039981)
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Interface engineering for enhancing the performance of novel sodium-doped MoS2 nanocomposite: Synthesis and characterization functioning as a high-performance supercapacitor

1Department of Chemical & Petroleum Engineering, United Arab Emirates University (UAEU), Al Ain 15551, United Arab Emirates 2Graduate School of Convergence Science, Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 46241, Korea 3Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea
pik@seoultech.ac.kr
Korean Journal of Chemical Engineering, December 2023, 40(12), 2847-2854(8), 10.1007/s11814-023-1556-2
downloadDownload PDF

Abstract

Novel structured Na-doped MoS2 nanosheets were developed in situ on Ni foam through a more accessible two-step hydrothermal technique. Benefiting from the synergistic reactions of the superior capacitance of Na-doped MoS2 nanosheet, the superior electrical kinetics of Na-doped, and the porous nanostructure of the composites, the designed Na-doped MoS2 nanosheet composites electrode achieves notable electrochemical activity. The material's structural properties investigate using an X-ray photoelectron spectroscope analyzer, X-ray powder diffractions, scanning electron microscope, and transmission electron microscope. The electrochemical activity of the designed electrodes was executed using cyclic voltammograms, galvanostatic charge/discharges, and electrochemical impedance spectroscopy. Compared to the pure MoS2 electrode, the novel architecture Na-doped MoS2 nanosheet deremonstrates a higher specific capacity of 374.3 C g1 at 1 A g1 . In addition, it achieves notable cycling stability performance and retains 87.4% capacity over 5,000 long cycles at 3 A g1 . These notable results reveal that the uniquely designed Nadoped MoS2 nanosheet displays superior electrochemical consequences and higher potential as nanomateria

References

1. C. Xiong, C. Zheng, B. Li and Y. Ni, Ind. Crops Prod., 178, 114565 (2022).
2. Y. A. Kumar, S. Sambasivam, S. Ahmed Hira, K. Zeb, W. Uddin, T. N. V. Krishna, K. Dasha Kumar, I. M. Obaidat and H.-J. Kim, Electrochim. Acta, 364, 137318 (2020).
3. Y. A. Kumar and H.-J. Kim, Dalton Trans., 47, 15545 (2018).
4. Y. A. Kumar, T. Anitha and H.-J. Kim, Energies, 12, 1143 (2019).
5. K. Hyun, M. Shin and Y. Kwon, Korean J. Chem. Eng., 39, 3315 (2022).
6. S. H. Baek, Y. M. Jeong, D. Y. Kim and I. K. Park, Chem. Eng. J., 393, 124713 (2020).
7. S. Wang, Z.-S. Wu, F. Zhou, X. Shi, S. Zheng, J. Qin, H. Xiao, C. Sun and X. Bao, Npj Mater. Appl., 2, 7 (2018).
8. H. S. Chang, B.-M. Lee, J. M. Yun and J.-H. Choi, Korean J. Chem. Eng., 39, 1232 (2022).
9. A. Dang, Y. Sun, Y. Liu, Y. Xia, X. Liu, Y. Gao, S. Wu, T. Li, A. Zada and F. Ye, ACS Appl. Energy Mater., 5, 9158 (2022).
10. M. F. El-Kady, Y. Shao and R. B. Kaner, Nat. Rev. Mater., 1, 16033 (2016).
11. Q. Guo, B. Li, M. Shen, W. Li, Q. Gao and G. Xu, Korean J. Chem. Eng., 40, 1331 (2023).
12. M. H. Gomaa, Z. A. Hamid, M. A. M. Ibrahim, R. A. E. Sttar and E. H. El-Mosallamy, Korean J. Chem. Eng., 40, 1186 (2023).
13. C. Cao, X. Xie, Y. Zeng, S. Shi, G. Wang, L. Yang, C. Z. Wang and S. Lin, Nano Energy, 61, 550 (2019).
14. J. I. Sohn, Y.-I. Jung, S.-H. Baek, S. N. Cha, J. E. Jang, C.-H. Cho, J. H. Kim, J. M. Kim and I.-K. Park, Nanoscale, 6, 2046 (2014).
15. K.-H. Kim, Y.-J. Song and H.-J. Ahn, Korean J. Chem. Eng., 40, 1071 (2023).
16. D. Akcan, A. Gungor and L. Arda, J. Mol. Struct., 1161, 299 (2018).
17. Z. Ye, T. Wang, S. Wu, X. Ji and Q. Zhang, J. Alloys Compd., 690, 189 (2017).
18. H. Yuan and M. Xu, Ceram. Int., 44, 15531 (2018).
19. L. W. Wang, F. Wu, D. X. Tian, W. J. Li, L. Fang, C. Y. Kong and M. Zhou, J. Alloys Compd., 623, 367 (2015).
20. Y. F. Lu, K. W. Wu, Y. J. Zeng, Z. Z. Ye, J. Y. Huang, L. P. Zhu and B. H. Zhao, Chem. Phys. Lett., 582, 82 (2013).
21. J. Chen, N. Kuriyama, H. Yuan, H. T. Takeshita and T. Sakai, J. Am. Chem. Soc., 123, 11813 (2001).
22. S. J. Ding, J. S. Chen and X. W. Lou, Chem. Eur. J., 17, 13142 (2011).
23. M.Y. Sun, J. Adjaye and A.E. Nelson, Appl. Catal. A, 263, 131 (2004).
24. H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta and S. K. Pati, Angew. Chem. Int. Ed., 49, 4059 (2010).
25. G. F. Ma, H. Peng, J. J. Mu, H. H. Huang, X. Z. Zhou and Z. Q. Lei, J. Power Sources, 229, 72 (2013).
26. N. Zheng, X. Bu and P. Feng, Nature, 426, 428 (2003).
27. J. Xiao, D. Choi, L. Cosimbescu, P. Koech, J. Liu and J. P. Lemmon, Chem. Mater., 22, 4522 (2010).
28. J. M. Soon and K. P. Loh, Electrochem. Solid-State Lett., 10, A250 (2007).
29. D. K. Kulurumotlakatla, A. K. Yedluri and H.-J. Kim, J. Energy Stor.
31, 101619 (2020).
30. H. M. Arbi, A. A. Yadav, A. K. Yedluri, M. Moniruzzaman, S. Alzahmi and I. M. Obaidat, Nanomaterials, 12, 3982 (2022).
31. M. Moniruzzaman, A. K. Yedluri, M. R. Pallavolu, H. M. Arbi, S. Alzahmi and I. M. Obaidat, Nanomaterials, 12, 3187 (2022).
32. S. Chen, S. Cui, S. Chandrasekaran, C. Ke, Z. Li, P. Chen, C. Zhang and Y. Jiang, Electrochim. Acta, 341, 135893 (2020).
33. Z. Guo, Y. Wang, M. Li, S. Wang and F. Du, J. Alloys Compd., 832, 155012 (2020).
34. Z. Yu, N. Zhang, G. Li, L. Ma, T. Li, Z. Tong, Y. Li and K. Wang, J.Energy Storage, 51, 104511 (2022).
35. S. D. Kharade, N. B. Pawar, K. V. Khot, P. B. Patil, S. S. Mali, C. K. Hong, P. S. Patil and P. N. Bhosale, RSC Adv., 6, 24985 (2016).
36. S. Alipour and M. Arvand, Colloids Surf. A Physicochem. Eng. Asp.,606, 125456 (2020).
37. H. Zhang, X. Zhang, D. Zhang, X. Sun, H. Lin, C. Wang and Y. Ma, J. Phys. Chem. B, 117, 1616 (2013).
38. A. Wang, M. Zhang, Z. Huang, H. Liu, Z. Wang, Z. Song, W. Zhou, G. Zhu and S. Shao, J. Solid State Chem., 307, 122760 (2022).
39. S. C. Zhang, R. R. Hu, P. Dai, X. X. Yu, Z. L. Ding, M. Z. Wu, G. Li, Y. Q. Ma and C. J. Tu, Appl. Surf. Sci., 396, 994 (2017).
40. K. J. Huang, L. Wang, Y. J. Liu, Y. M. Liu, H. B. Wang, T. Gan and L. L. Wang, Int. J. Hydrogen Energy, 38, 14027 (2013).
41. E. G. da Silveira Firmiano, A. C. Rabelo, C. J. Dalmaschio, A. N.Pinheiro, E. C. Pereira, W. H. Schreiner and E. R. Leite, Adv. Energy
Mater., 4, 1301380 (2014).
42. J. Wang, Z. C. Wu, K. H. Hu, X. Y. Chen and H. B. Yin, J. Alloys Comp., 619, 38 (2015).
43. F. N. I. Sari and J. M. Ting, Sci. Rep., 7, 5999 (2017).
44. B. Q. Xie, Y. Chen, M. Y. Yu, T. Sun, L. H. Lu, T. Xie, Y. Zhang and Y. C Wu, Carbon, 99, 35 (2016).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로