Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 4, 2023
Revised February 12, 2023
Accepted March 2, 2023
- Acknowledgements
- This work was supported by the National Natural Science Foundation of China (51706104), National Natural Science Foundation of Jiangsu Province (BK20211370) and the Fundamental Research Funds for the Central Universities (30920031103).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Comprehensive analysis of acid gases on mercury removal by CuCl2 modified char exposure to oxy-fuel environment: Experiment and XPS perception
Abstract
In this work, 0.15 mol/L CuCl2 solution was used to impregnate rice husk char. Experiments were conducted
in a laboratory-scale fixed-bed reactor to investigate the oxidation mechanism of Hg0
by acidic gases. The effects of
acid gases (SO2, HCl and NO) atmospheres on the mercury removal efficiency of the adsorbent were studied by FTIR,
XPS and experiments. The FTIR results showed that the surface of the prepared rice husk char adsorbent contained a
large amount of Cu2+ and chlorine-containing functional groups. The XPS results showed that the Cu+
on the surface
of the adsorbent increased after mercury adsorption. This work shows that the inhibitory effect of SO2 on Hg removal
is reflected in the blockage of the pore structure on the adsorbent surface; the competitive adsorption of O2 needed for
the generation of C-O*, the formation of an acid mist by SO2 hinders the contact of Hg0
with the active site. The promotion of HCl is due to the production of active chlorine substances (Cl*) to promote the oxidation of Hg0
to HgCl,
HgCl2 and HgO. And introduction of NO will react with O2, while generation of NO2 is beneficial to the oxidation of
Hg0
to HgO and Hg(NO3)2. The optimum mercury removal efficiency of the adsorbent is nearly 100% under certain
conditions.
References
2. D. Ye, X. Wang, R. Wang, S. Wang, H. Liu and H. Wang, J. Environ. Chem. Eng., 9(5), 105993 (2021).
3. S. Zhao, H. Luo, A. Ma, W. Xie, K. Sun and Z. Sun, Fuel, 313,122979 (2022).
4. M. P. Ancora, L. Zhang, S. Wang, J. J. Schreifels and J. Hao, Energy Policy, 88, 485 (2016).
5. Z. Wang, J. Liu, Y. Yang, S. Miao and F. Shen, Energy Fuels, 32(4),4453 (2018).
6. J. Yang, H. Xu, Y. Zhao, H. Li and J. Zhang, Energy Fuels, 35(5),3581 (2021).
7. C. Li, Y. Duan, H. Tang, C. Zhu, Y.-n. Li, Y. Zheng and M. Liu,Fuel, 211, 621 (2018).
8. S. Zhao, D. Pudasainee, Y. Duan, R. Gupta, M. Liu and J. Lu, Prog. Energy Combust. Sci., 73, 26 (2019).
9. Y. Li, J. Yu, Y. Liu, R. Huang, Z. Wang and Y. Zhao, J. Hazard. Mater.,128132 (2022).
10. H. Ran, H. Wang, J. Wu, Y. Zhu, J. Wu and H. Shen, Ind. Eng.Chem. Res., 60(48), 17450 (2021).
11. J. Wu, H. Wang, H. Shen, C. Shen, Y. Zhu, J. Wu and H. Ran, Ind.Eng. Chem. Res., 60(33), 12200 (2021).
12. Y. Wang, J. Ni, P. Chen, J. Chen, F. Jia and S. Song, Phys. E: Lowdimensional Systems and Nanostructures, 127, 114504 (2021).
13. A. Zhang, W. Zheng, J. Song, S. Hu, Z. Liu and J. Xiang, Chem.Eng. J., 236, 29 (2014).
14. A. Shen, Y. Wang, R. Wang, Y. Duan, J. Tao, X. Gu, P. Wang and Z.Xu, Fuel, 326, 124990 (2022).
15. Q. Zhou, Y. Duan, M. Chen, M. Liu, P. Lu and S. Zhao, Chem.Eng. J., 345, 578 (2018).
16. X. Zhang, Y. Li, Z. Zhang, M. Nie, L. Wang and H. Zhang, Sci.Total Environ., 778, 146245 (2021).
17. A. Ma, S. Zhao, H. Luo, Z. Sun, X. Xie, Y. Liao, X. Liang and H. Li,Chem. Eng. J., 429, 132154 (2022).
18. Y. Peng, T. Wang, Y. Gu, J. Wang, Y. Zhang and W.-P. Pan, Fuel,301, 121054 (2021).
19. S. Zhao, Y. Liao, X. Xie, Y. Wang and Z. Sun, Chem. Eng. J., 450,138023 (2022).
20. D. Liu, C. Li, J. Wu and Y. Liu, Chem. Eng. J., 391, 123514 (2020).
21. S. Zhao, H. Luo, A. Ma, W. Xie, K. Sun and Z. Sun, Chem. Eng. J.,435, 135073 (2022).
22. H. Shen, H. Zhang, Y. Xu, H. Chen, Y. Zhu, Z. Zhang and W. Li,Energy Conv., 269, 116116 (2022).
23. M. Mariana, A. K. HPS, E. Mistar, E. B. Yahya, T. Alfatah, M. Danish and M. Amayreh, J. Water Process Eng., 43, 102221 (2021).
24. Y. Li, Y. Liu, W. Yang, L. Liu and J. Pan, Fuel, 291, 120152 (2021).
25. C. Zhao, X. Chen and C. Zhao, Ind. Eng. Chem. Res., 50(8), 4464(2011).
26. J. Zhang, C. Li, X. Du, L. Gao, S. Li, Y. Zhang, Z. Li and Y. Yi,Environ. Sci. Pollut. Res., 27(15), 17891 (2020).
27. R. Xiao, T. Gao, X. Cui, Y. Ji, Y. Zhang, X. Chuai, Z. Xiong, Y. Liao,H. Gu and J. Yang, Fuel, 310, 122219 (2022).
28. Y. Chen, H. Liu, X. Guo, F. Wu, Y. Zhao and J. Zhang, Ind. Eng.Chem. Res., 59(13), 5557 (2020).
29. C. Shen, H. Wang, H. Shen, J. Wu, Y. Zhu, W. Shi, X. Zhang andZ. Ying, Energy Fuels, 34(8), 9872 (2020).
30. S. C. Agwuncha, S. Owonubi, D. P. Fapojuwo, A. Abdulkarim, T. P.Okonkwo and E. M. Makhatha, Mater. Today: Proc., 38, 958 (2021).
31. B. Hinterstoisser, M. Åkerholm and L. Salmén, Carbohydr. Res.,334(1), 27 (2001).
32. G. F. Huang, Q. T. Wu, J. W. C. Wong and B. B. Nagar, Bioresour.Technol., 97(15), 1834 (2006).
33. W. Yan, J. Zhang and C. Jing, J. Colloid Interface Sci., 390(1), 196 (2013).
34. K. Yadav, R. Bagal, S. Parmar, T. U. Patro and A. C. Abhyankar, Ind.Eng. Chem. Res., 60(39), 14225 (2021).
35. A. Abd-Elhamid, A. Nayl, A. A. E. Shanshory, H. M. Soliman and H. Aly, RSC Adv., 9(10), 5770 (2019).
36. M. Consumi, G. Leone, G. Tamasi and A. Magnani, Food Additives Contam.: Part A, 38(10), 1629 (2021).
37. Y. Huang, J. Tang, L. Gai, Y. Gong, H. Guan, R. He and H. Lyu,Chem. Eng. J., 319, 229 (2017).
38. M. Lv, G. Q. Luo, R. J. Zou, Q. Y. Ji, C. Fang, L. Wang, X. Li and H.Yao, Fuel, 322, 124229 (2022).
39. H. Li, Y. Wang, S. Wang, X. Wang and J. Hu, Fuel, 208, 576 (2017).
40. S. Tao, C. Li, X. Fan, G. Zeng, P. Lu, X. Zhang, Q. Wen, W. Zhao,D. Luo and C. Fan, Chem. Eng. J., 210, 547 (2012).
41. J. Zhang, C. T. Li, X. Y. Du, S. H. Li and L. Huang, Fuel, 324, 9 (2022).
42. J. Luo, Q. Niu, M. Jin, Y. Cao, L. Ye and R. Du, J. Hazard. Mater.,376, 21 (2019).
43. S.-j. Wu, R. Katayama, M. Azhar Uddin, E. Sasaoka and Z.-m. Xie,Energy Fuels, 29(10), 6598 (2015).
44. Y. Li, Y. X. Liu, W. Yang, L. Liu and J. F. Pan, Fuel, 291, 120152 (2021).
45. T. Yao, Y. Duan, T. M. Bisson, R. Gupta, D. Pudasainee, C. Zhu and Z. Xu, J. Hazard. Mater., 374, 267 (2019).
46. J. F. Ma, C. T. Li, L. K. Zhao, J. Zhang, J. K. Song, G. M. Zeng, X. N. Zhang and Y. Xie, Appl. Surf. Sci., 329, 292 (2015).
47. Z. Zhou, X. Liu, Y. Hu, J. Xu, X. E. Cao, Z. Liao and M. Xu, Fuel,225, 134 (2018).
48. K. Feng, Y. Zhang, Z. G. Li, C. W. Yao, L. Yao and C. Y. Fan, Surf.Coat. Tech., 397, 126004 (2020).
49. J. Gu, P. Shao, L. Luo, Y. Wang, T. Zhao, C. Yang, P. Chen and F.Liu, Sep. Purif. Technol., 285, 120377 (2022).
50. H. W. Zhang, H. J. Shi, J. Y. Chen, K. Zhao, L. Wang and Y. H.Hao, Korean J. Chem. Eng., 33(11), 3134 (2016).
51. Q. Q. Shi, X. Zhang, B. X. Shen, K. Ren, Y. T. Wang and J. Z. Luo,Chem. Eng. J., 406, 126828 (2021).
52. W. Du, L. B. Yin, Y. Q. Zhuo, Q. S. Xu, L. Zhang and C. H. Chen,Ind. Eng. Chem. Res., 53(2), 582 (2014).
53. B. Zhang, X. Zeng, P. Xu, J. Chen, Y. Xu, G. Luo, M. Xu and H.Yao, Environ. Sci. Technol., 50(21), 11837 (2016).
54. J. R. Edwards, R. K. Srivastava and J. D. Kilgroe, J. Air Waste Manage., 51(6), 869 (2001).
55. X. Zhou, W. Xu, H. Wang, L. Tong, H. Qi and T. Zhu, Chem. Eng.J., 254, 82 (2014).
56. H. Yi, Q. Yu, X. Tang, P. Ning, L. Yang, Z. Ye and J. Song, Ind. Eng.Chem. Res., 50(7), 3960 (2011).
57. F. Matloubi Moghaddam, R. Pourkaveh and M. Ahangarpour,ChemistrySelect, 3(9), 2586 (2018).
58. Z. J. Zhou, X. W. Liu, Y. C. Hu, Z. Q. Liao, S. Cheng and M. H. Xu,Fuel, 216, 356 (2018).
59. X. Zhang, Z. Li, J. Wang, B. Tan, Y. Cui and G. He, Fuel, 203, 308 (2017).
60. J. Xie, Z. Qu, N. Yan, S. Yang, W. Chen, L. Hu, W. Huang and P.Liu, J. Hazard. Mater., 261, 206 (2013).
61. R. L. Hao, X. H. Wang, Y. H. Liang, Y. J. Lu, Y. M. Cai, X. Z. Mao,B. Yuan and Y. Zhao, Chem. Eng. J., 330, 1279 (2017).
62. R. Hao, X. Dong, Z. Wang, L. Fu, Y. Han, B. Yuan, Y. Gong and Y.Zhao, Environ. Sci. Technol., 53(14), 8324 (2019).
63. W. Yang, Y. X. Liu, Q. Wang and J. F. Pan, Chem. Eng. J., 326, 16 (2017).
64. W. Yang, Y. Li, S. Shi, H. Chen, Y. Shan and Y. X. Liu, Fuel, 256,115977 (2019).
65. T. Gao, Y. Zhang, Y. Qiu, Z. Xiong, J. Yang, Y. Zhao and J. Zhang,Sci. China Technol. Sci., 64(11), 2441 (2021).
66. G. J. Lan, Q. F. Ye, Y. N. Zhu, H. D. Tang, W. F. Han and Y. Li, Acs Appl. Nano Mater., 3(3), 3004 (2020).
67. T. Liu, C. Y. Man, X. Guo and C. G. Zheng, Fuel, 173, 209 (2016).
68. B. Xu, W.-Y. Shi, W. Sun, L.-M. Pan and Y.-Q. Dong, Appl. Surf. Sci., 565 (2021).
69. Y. Chen, X. Guo, F. Wu, Y. Huang and Z. Yin, Appl. Surf. Sci., 458,790 (2018).
70. W. Xu, Y. G. Adewuyi, Y. Liu and Y. Wang, Fuel Process. Technol.,170, 21 (2018).
71. B. Shen, S. Zhu, X. Zhang, G. Chi, D. Patel, M. Si and C. Wu, Fuel,224, 241 (2018).
72. R. L. Hao, Z. Qian, X. J. Yang, M. C. Luo, X. H. Feng, W. T. Qiao, Y.Zhao and B. Yuan, Chem. Eng. J., 450, 137997 (2022).
73. W. Yang, Z. Y. Liu, W. Xu and Y. X. Liu, Fuel, 214, 196 (2018).
74. H. C. Zhang, T. Wang, Y. S. Zhang, B. M. Sun and W. P. Pan, J.Cleaner Prod., 257, 120598 (2020).
75. C. M. Zhang, W. Song, X. C. Zhang, R. Li, S. J. Zhao and C. M.Fan, J. Mater. Sci., 53(13), 9429 (2018).
76. S. S. Tao, C. T. Li, X. P. Fan, G. M. Zeng, P. Lu, X. Zhang, Q. B. Wen,W. W. Zhao, D. Q. Luo and C. Z. Fan, Chem. Eng. J., 210, 547 (2012).
77. Y. Li, P. D. Murphy, C. Y. Wu, K. W. Powers and J. C. Bonzongo, Environ. Sci. Technol., 42(14), 5304 (2008).