ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 22, 2022
Revised February 11, 2023
Accepted February 27, 2023
Acknowledgements
This research was financially supported by Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, under grant No. 22038
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Enhanced degradation of 2,4-dichlorphenoxyacetic acid herbicide by CaO2 activated by Fe(II) and ultrasound irradiation: Practical insight and mineralization

1Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran 2Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran 3Yildiz Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, 34220 Istanbul, Turkey 4Deputy of Health, Babol University of Medical Sciences, Babol, Iran 5Deparment of Agricultral Extension and Education, Bu-Ali Sina University, Hamedan, Iran 6Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
akbar_eslami@yahoo.com, S.madihi8@gmail.com
Korean Journal of Chemical Engineering, December 2023, 40(12), 2866-2875(10), 10.1007/s11814-023-1405-3
downloadDownload PDF

Abstract

CaO2 was activated by Fe(II) and ultrasound (US) irradiation to degrade 2,4-dichlorphenoxyacetic acid (2,4- D) for the first time. Among transition metals (Fe, Cu, Mn and Co), Fe(II) had the best performance for the activation of CaO2. The impact of pH, CaO2 and Fe(II) concentration was studied, and under optimal situation ~91% of 2,4-D was degraded during 60 min reaction time. The quenching experiments showed that the hydroxyl radical was the main factor for the destruction of 2,4-D while superoxide anions had a minor role. The bicarbonate ions and acid humic exhibited a strong inhibitory effect on the performance of CaO2/US/Fe(II) process. Carbon and chlorine mineralization of 2,4- D degradation was investigated; around 41% of C and 35% of Cl were mineralized during 60 min reaction time. The function of CaO2/US/Fe(II) process was studied on real drainage and other organic pollutants, and the results showed that the CaO2/US/Fe(II) process can be practical for water treatment. Finally, intermediates of 2,4-D degradation were identified, a pathway was proposed, and the toxicity of intermediates was assessed by ECOSAR software.

References

1. B. Liu, Y. Wang, X. Hao, J. Wang, Z. Yang and Q. Yang, J. Water Process Eng., 46, 102602 (2022).
2. N. Jaafarzadeh, F. Ghanbari and A. Zahedi, J. Water Process Eng.,22, 203 (2018).
3. N. Jaafarzadeh and G. Barzegar, Process Saf. Environ. Prot., 111,520 (2017).
4. J. Zuo, B. Wang, J. Kang, P. Yan, J. Shen, S. Wang, D. Fu, X. Zhu, T.She, S. Zhao and Z. Chen, Sep. Purif. Technol., 297, 121459 (2022).
5. A. Eslami, M. R. Khavari Kashani, A. Khodadadi, G. Varank, A.Kadier, P.-C. Ma, S. Madihi-Bidgoli and F. Ghanbari, J. Water Process Eng., 44, 102330 (2021).
6. A. A. Babaei and F. Ghanbari, J. Water Reuse Desalin., 6, 484 (2016).
7. M. Zhao, Y. Xiang, X. Jiao, B. Cao, S. Tang, Z. Zheng, X. Zhang, T.Jiao and D. Yuan, Sep. Purif. Technol., 276, 119289 (2021).
8. M. Zheng, B. Gao, J. Zhang, M. G. El-Din, S. A. Snyder, M. Wu and L. Tang, Environ. Res., 212, 113531 (2022).
9. C. Lai, X. Shi, L. Li, M. Cheng, X. Liu, S. Liu, B. Li, H. Yi, L. Qin, M. Zhang and N. An, Sci. Total Environ., 775, 145850 (2021).
10. F. Ghanbari, F. Zirrahi, K.-Y. A. Lin, B. Kakavandi and A. Hassani, J. Environ. Chem. Eng., 8, 104167 (2020).
11. S. Adityosulindro, L. Barthe, K. González-Labrada, U. J. Jáuregui Haza, H. Delmas and C. Julcour, Ultrason. Sonochem., 39, 889 (2017).
12. P. Sathishkumar, R. V. Mangalaraja and S. Anandan, Renew. Sustain. Energy Rev., 55, 426 (2016).
13. G. Xue, M. Zheng, Y. Qian, Q. Li, P. Gao, Z. Liu, H. Chen and X. Li, Chemosphere, 255, 126983 (2020).
14. M. Zheng, K. D. Daniels, M. Park, A. B. Nienhauser, E. C. Clevenger, Y. Li and S. A. Snyder, Water Res., 164, 114922 (2019).
15. D. Yuan, C. Zhang, S. Tang, X. Li, J. Tang, Y. Rao, Z. Wang and Q.Zhang, Water Res., 163, 114861 (2019).
16. R. M. Sellers, Analyst, 105, 950 (1980).
17. M. Yousefi, F. Ghanbari, M. A. Zazouli and S. Madihi-Bidgoli,Desalin. Water Treat., 70, 364 (2017).
18. N. N. Mahamuni and Y. G. Adewuyi, Ultrason. Sonochem., 17, 990 (2010).
19. A. D. Bokare and W. Choi, J. Hazard. Mater., 275, 121 (2014).
20. F. J. Millero, R. L. Johnson, C. A. Vega, V. K. Sharma and S. Sotolongo, J. Solution Chem., 21, 1271 (1992).
21. A. Hassani, J. Scaria, F. Ghanbari and P. V. Nidheesh, Environ. Res.,217, 114789 (2023).
22. N. Jaafarzadeh, F. Ghanbari and M. Moradi, Korean J. Chem. Eng.,32, 458 (2015).
23. F. Ghanbari, M. Riahi, B. Kakavandi, X. Hong and K.-Y. A. Lin, J.Water Process Eng., 36, 101321 (2020).
24. A. Northup and D. Cassidy, J. Hazard. Mater., 152, 1164 (2008).
25. M. D. N. Ramos, C. S. Santana, C. C. V. Velloso, A. H. M. da Silva,F. Magalhães and A. Aguiar, Process Saf. Environ. Prot., 155, 366 (2021).
26. A. Shokri and M. S. Fard, Environ. Challenges, 7, 100534 (2022).
27. A. Eslami, F. Mehdipour, K.-Y. A. Lin, H. Sharifi Maleksari, F. Mirzaei and F. Ghanbari, J. Water Process Eng., 33, 100998 (2020).
28. A. Babuponnusami and K. Muthukumar, J. Environ. Chem. Eng.,2, 557 (2014).
29. N. A. Khan, A. H. Khan, P. Tiwari, M. Zubair and M. Naushad, J.Water Process Eng., 44, 102440 (2021).
30. M. B. K. Suhan, S. M. T. Mahtab, W. Aziz, S. Akter and M. S. Islam,Case Studies Chem. Environ. Eng., 4, 100126 (2021).
31. M. A. A. Masud, D. G. Kim and W. S. Shin, Environ. Res., 214,113882 (2022).
32. J. Huang and H. Zhang, Environ. Int., 133, 105141 (2019).
33. L. Gao, Y. Guo, J. Zhan, G. Yu and Y. Wang, Water Res., 221, 118730 (2022).
34. Y. Guo, J. Long, J. Huang, G. Yu and Y. Wang, Water Res., 215,118275 (2022).
35. J. Xie, Z. Wang, S. Lu, D. Wu, Z. Zhang and H. Kong, Chem. Eng.J., 254, 163 (2014).
36. N. Li, Y. Wang, X. Cheng, H. Dai, B. Yan, G. Chen, L. a. Hou and S. Wang, Water Res., 222, 118896 (2022).
37. A. Asghar, H. V. Lutze, J. Tuerk and T. C. Schmidt, J. Hazard. Mater.,429, 128189 (2022).
38. T. Zhao, P. Li, C. Tai, J. She, Y. Yin, Y. a. Qi and G. Zhang, J. Hazard. Mater., 346, 42 (2018).
39. A. Hassani, P. Eghbali, F. Mahdipour, S. Wacławek, K.-Y. A. Lin and F. Ghanbari, Chem. Eng. J., 453, 139556 (2023).
40. N. Dong, L. Ge, P. Chen, W. Wang, F. Tan, X. Wang, X. Qiao and P. Keung Wong, Sep. Purif. Technol., 285, 120334 (2022).
41. A. Serra-Clusellas, L. De Angelis, C.-H. Lin, P. Vo, M. Bayati, L. Sumner, Z. Lei, N. B. Amaral, L. M. Bertini, J. Mazza, L. R. Pizzio, J. D. Stripeikis, J. A. Rengifo-Herrera and M. M. Fidalgo de Cortalezzi, Water Res., 144, 572 (2018).
42. G. Imoberdorf and M. Mohseni, Chem. Eng. J., 187, 114 (2012).
43. W. R. Haag and C. C. David Yao, Environ. Sci. Technol., 26, 1005 (1992).
44. W. Tan, Y. Ruan, Z. Diao, G. Song, M. Su, L. a. Hou, D. Chen, L. Kong and H. Deng, Chemosphere, 280, 130626 (2021).
45. Y. Zhong, K. Shih, Z. Diao, G. Song, M. Su, L. a. Hou, D. Chen and L. Kong, Chem. Eng. J., 417, 129225 (2021).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로