ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 23, 2023
Revised March 28, 2023
Accepted March 31, 2023
Acknowledgements
This paper was supported by Konkuk University Premier Research Fund in 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Effects of adsorbent sampling variables on the accurate measurement of isoprene

1Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea 2Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea 3Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea 4Department of Immunology, KU Open Innovation Center, School of Medicine, Konkuk University, Chungju 27376, Korea
jckim@konkuk.ac.kr
Korean Journal of Chemical Engineering, December 2023, 40(12), 2886-2891(6), 10.1007/s11814-023-1460-9
downloadDownload PDF

Abstract

Isoprene is an important volatile organic compound causing photochemical smog in the atmosphere; thus, accurate analysis of isoprene is essential. In this study, the effect of sampling conditions, including adsorbent types, sampling temperatures, and flow rates on the recovery of isoprene, was investigated. Common adsorption traps of isoprene, including Tenax TA/Carbosieve SIII, Tenax TA/Carbotrap, were used as adsorbents. Sampling temperatures varied from 25 o C to 40 o C. Sampling flow rates were 50, 100, and 200 mL min1 . It was found that the Tenax/Carbotrap trap revealed the highest isoprene recovery rate; however, the Tenax/Carbosieve SIII trap depicted more significant loss of isoprene than the other one. As for sampling variables, the lower the temperatures and flow rates concerned were, the higher the isoprene recovery was. It was concluded that sampling temperatures and flow rates should be 35 o C and 50 mL min1 during a sampling process, respectively. In addition, Carbosieve SIII should not be used for isoprene sampling due to its poor recovery rate

References

1. C. Y. Hsu, H. C. Chiang, R. H. Shie, C. H. Ku, T. Y. Lin, M. J. Chen,N. T. Chen and Y. C. Chen, Environ. Pollut., 240, 95 (2018).
2. J. W. Ahn, T. V. Dinh, S. Y. Park, I. Y. Choi, C. R. Park and Y. S.Son, Atmos. Pollut. Res., 13, 101470 (2022).
3. K. Rumchev, H. Brown, and J. Spickett, Rev. Environ. Health, 22,39 (2007).
4. J. Kim, J. E. Lee, H. W. Lee, J. K. Jeon, J. H. Song, S. C. Jung, Y. F.Tsang and Y. K. Park, J. Hazard. Mater., 397, 122577 (2020).
5. P. A. Dominutti, J. R. Hopkins, M. Shaw, G. P. Mills, H. A. Le, D. H.Huy, G. L. Forster, S. Keita, T. T. Hien and D. E. Oram, Environ.Pollut., 318, 120927 (2023).
6. G. A. Novak and T. H. Bertram, Acc. Chem. Res., 53, 1014 (2020).
7. K. Na, Y. P. Kim, I. Moon and K. C. Moon, Chemosphere, 55, 585 (2004).
8. Q. Liang, X. Bao, Q. Sun, Q. Zhang, X. Zou, C. Huang, C. Shen and Y. Chu, Environ. Pollut., 265, 114628 (2020).
9. A. Kiendler-Scharr, J. Wildt, M. D. Maso, T. Hohaus, E. Kleist, T. F. Mentel, R. Tillmann, R. Uerlings, U. Schurr and A. Wahner, Nature,461, 381 (2009).
10. H. M. Lybarger, Kirk-Othmer Encyclopedia of Chemical Technology: Isoprene, John Wiley & Sons, Inc., Hoboken (2014).
11. J. F. Lamarque, T. C. Bond, V. Eyring, C. Granier, A. Heil, Z. Klimont, D. Lee, C. Liousse, A. Mieville, B. Owen, M. G. Schultz, D.
Shindell, S. J. Smith, E. Stehfest, J. Van Aardenne, O. R. Cooper, M.Kainuma, N. Mahowald, J. R. McConnell, V. Naik, K. Riahi and D. P. Van Vuuren, Atmos. Chem. Phys., 10, 7017 (2010).
12. A. Guenther, J. Geophys. Res., 100, 8873 (1995).
13. C. M. da Silva, E. C. C. A. Souza, L. L. da Silva, R. L. Oliveira, S. M. Corrêa and G. Arbilla, Bull. Environ. Contam. Toxicol., 97, 653 (2016).
14. Y.-K. Park, W. G. Shim, S.-C. Jung, H.-Y. Jung and S. C. Kim, Korean J. Chem. Eng., 39, 161 (2022).
15. K.-J Kim, J.-H Lim and J.-C. Kim, J. Korean Soc. Environ. Anal., 8,132 (2005).
16. J.-C. Kim, J. Korean Soc. Atmos., 22, 743 (2006).
17. N. Nath, A. Kumar, S. Chakroborty, S. Soren, A. Barik, K. Pal and F. G. de Souza, ACS Omega, 8, 4436 (2023).
18. T. Karl, P. Prazeller, D. Mayr, A. Jordan, J. Rieder, R. Fall and W.Lindinger, J. Appl. Physiol., 91, 762 (2001).
19. J. King, P. Mochalski, K. Unterkofler, G. Teschl, M. Klieber, M. Stein, A. Amann and M. Baumann, Biochem. Biophys. Res. Commun., 423, 526 (2012).
20. H. M. Chein and T. M. Chen, J. Air Waste Manag. Assoc., 53, 1029 (2003).
21. H. M. Chein, T. M. Chen, S. G. Aggarwal, C. J. Tsai and C. C. Huang, J. Air Waste Manag. Assoc., 54, 218 (2004).
22. J. E. Lee, Y. S. Ok, D. C. W. Tsang, J. H. Song, S.-C. Jung and Y.-K. Park, Sci. Total Environ., 719, 137405 (2020).
23. R. D. F. M. Tallman, Toxicology, 113, 242 (1996).
24. J. V. Eijk and D. Kotzias, Fresenius Environ. Bull., 3, 220 (1994).
25. H. F. Linskens and J. F. Jackson, Modern Methods of Plant Analysis Volume 13: Plant Toxin Analysis, Springer-Verlag, Berlin (1992).
26. H. F. Linskens and J. F. Jackson, Modern Methods of Plant Analysis Volume 19: Plant Volatile Analysis, Springer-Verlag, Berlin (1997).
27. E. A. Woolfenden and W. A. McCleanny, Compendium Method TO-17: Determination of Volatile Organic Compounds in Ambient Air Using Active Sampling Onto Sorbent Tubes, U. S. Environmental Protection Agency, Cincinnati (1999).
28. J.-H. Kim, H. E. Lee and S. J. Yoon, Atmosphere, 14, 485 (2023).
29. M. Even, E. Juritsch and M. Richter, Anal. Chim. Acta, 1238, 340561 (2023).
30. S. W. Harshman, A. E. Jung, K. E. Strayer, B. L. Alfred, J. Mattamana, A. R. Veigl, A. I. Dash, C. E. Salter, M. A. Stoner-Dixon, J. T. Kelly, C. N. Davidson, R. L. Pitsch and J. A. Martin, J. Breath Res., 17, 027101 (2023).
31. S. J. Snow, J. D. Krug, J. M. Turlington, J. E. Richards, M. C. Schladweiler, A. D. Ledbetter, T. Krantz, C. King, M. I. Gilmour, S. H.
Gavett, U. P. Kodavanti, A. K. Farraj and M. S. Hazari, Atmos. Environ., 295, 119525 (2023).
32. A. Guion, S. Turquety, A. Cholakian, J. Polcher, A. Ehret and J. Lathiere, Atmos. Chem. Phys., 23, 1043 (2023).
33. SW-846 Test Method 8260D: Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS), U. S. Environmental Protection Agency, Washington D.C. (2018).
34. D. Biagini, T. Lomonaco, S. Ghimenti, M. Onor, F. G. Bellagambi, P. Salvo, F. D. Francesco and R. Fuoco, Talanta, 200, 145 (2019).
35. P. V. Doskey and W. Gao, J. Geophys. Res., 104, 21263 (1999).
36. W. J. Broadgate, P. S. Liss and S. A. Penkett, Geophys. Res. Lett., 24, 2675 (1997).
37. Y.-H. Kim and K.-H. Kim, Anal. Chem., 85, 7818 (2013).
38. D. Helmig and L. Vierling, Anal. Chem., 67, 4380 (1995).
39. Y.-H. Kim, K.-H. Kim, J. E. Szulejko and D. Parker, Anal. Chem., 86, 6640 (2014).
40. F. Innocenti, R. A. Robinson, T. D. Gardiner and A. J. Finalyson, Differential Absorption Lidar (DIAL) Quantification of VOC Fugitive Emissions from Small Sources in Los Angeles Area, USA, OCTOBER 2015, National Physical Laboratory, Middlesex, (2017).
41. O. Monje, J. Catechis and J. C. Sager, SAE Tech. Pap., 2007-01-3249 (2007).
42. V. Camel and M. Caude, J. Chromatogr. A, 710, 3 (1995).
43. A. Poormohammadi, A. Bahrami, A. Ghiasvand, F. G. Shahna and M. Farhadian, J. Environ. Health Sci. Eng., 17, 1045 (2019).
44. P. Foley, N. Gonzalez-Flesca, I. Zdanevitch and J. Corish, Environ.Sci. Technol., 35, 1671 (2001).
45. J.-H. Ahn, K.-H. Kim, J. E. Szulejko, E. E. Kwon and A. Deep, Microchem. J., 125, 142 (2016).
46. Ö. O. Kuntasal, D. Karman, D. Wang, S. G. Tuncel and G. Tuncel,J. Chromatogr. A, 1099, 43 (2005).
47. M. Richter, E. Juritsch and O. Jann, J. Chromatogr. A, 1626, 461389 (2020).
48. C. Geron, A. Guenther, J. Greenberg, H. W. Loescher, D. Clark and B. Baker, Atmos. Environ., 36, 3793 (2002).
49. B. Tolnai, J. Hlavay, D. Möller, H.-J. Prümke, H. Becker and M.Dostler, Microchem. J., 67, 163 (2000).
50. G. Barrefors and G. Petersson, Chemosphere, 30, 1551 (1995).
51. G. Barrefors and G. Petersson, J. Chromatogr. A, 643, 71 (1993).
52. K. Dettmer, T. Knobloch and W. Engewald, Fresenius J. Anal. Chem.,366, 70 (2000)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로