Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 2, 2023
Revised February 22, 2023
Accepted March 19, 2023
- Acknowledgements
- This work was supported by the National Research Foundation of Korea (2021R1A2C3011274).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Antioxidant activity of sea buckthorn (Hippophae rhamnoides) seed oil extracted using various organic solvents
Abstract
Sea buckthorn (SBT) combines very fascinating nutritional composition with vital vitamins (A, C, E, D, K,
and B complexes). Flavonoids, sterols, -carotene, linoleic acid, and many more unsaturated fatty acids are present in
the sea buckthorn plant. The organic extract of SBT seeds is commonly utilized as an anti-aging ingredient in numerous cosmetics. SBT oil extracts are used in pharmaceuticals that treat diseases like diabetes, cancer, cardiovascular disease, and neurological disorders, in addition to cosmetology. In this investigation, various concentrations of organic
solvents such as n-hexane, isopropyl alcohol, ethyl acetate, ethanol, methanol, and ascorbic acid (standard) were used
for the extraction of oil from sea buckthorn seeds. The antioxidant activity of such extracts was checked by the iron
chelating, commonly known as the ferric chloride (FeCl3) method, which is based on the ferric reducing ability of
plasma (FRAP) assay with the help of UV-Vis. Our results indicate that seed extract of Hippophae rhamnoides, should
be considered as a non-toxic source and the ferric reducing ability of plasma (FRAP) assay is used to evaluate the antioxidant potential by various organic solvents. The highest (68%) of FRAP is scavenged by the ethyl acetate and least
(53%) of isopropyl extracts.
References
2. U. Swenson and I. V. Bartish, J. Bot., 22, 369 (2002).
3. L. M. Bal, V. Meda, S. N. Naik and S. Satya, Food Res. Int., 44, 1718 (2011).
4. A. Jaśniewska and A. Diowksz, Antioxidants, 10, 1279 (2021).
5. J. Du, Y. Y. Xi and C. Song, Mod. Food Sci. Technol., 33, 8 (2017).
6. M. Ji, X. Gong, X. Li, C. Wang and M. Li, Molecules, 25, 917 (2020).
7. J. Woo, R. Joshi, Y. K. Park and J. K. Jeon, Korean J. Chem. Eng., 38,763 (2021).
8. B. H. Kim, D. Choi, L. Y. Piao, S. S. Park, M. K. Lee, W. S. Cha and H. Cho, Korean J. Chem. Eng., 29, 1393 (2012).
9. D. Choi, G. S. Lim, Y. L. Piao, O. Y. Choi, K. A. Cho, C. B. Park and H. Cho, Korean J. Chem. Eng., 31, 2221 (2014).
10. D. H. Lim, D. Choi, S. M. Kim, Y. Piao, O. Y. Choi, G. S. Lim and H. Cho, Korean J. Chem. Eng., 34 787 (2017).
11. S. Mäkinen, J. Hellström, M. Mäki, R. Korpinen and P. H. Mattila, Foods, 9, 265 (2020).
12. X. Wang, J. Liu, X. Zhang, S. Zhao, K. Zou, J. Xie and Y. Wang, Phytomedicine, 38, 90 (2018).
13. C. Shen, T. Wang, F. Guo, K. Sun, B. Wang, J. Wang and Y. Chen, Carbohydr. Polym., 274, 118648 (2021).
14. O. B. Olas, Food Chem. Toxicol., 97, 199 (2016).
15. I. Gradt, S. Kuhn, J. Morsel and G. Zvaigzne, Proc. Latv. Acad Sci.,Section B: Nat. Exact. Appl. Sci., 71, 211 (2017).
16. S.M. Repyakh, A.P. Kargapol'tsev, N.A. Chuprova and G.G. Yushipitsina, Chem. Nat. Compd., 26, 110 (1990).
17. H. L. Tan and K. M. McGrath, J. Colloid Interface Sci., 403, 7 (2013).
18. C. Qian, E. A. Decker, H. Xiao and D. McClements, J. Food Chem.,135, 1440 (2012).
19. R. Aslani and H. Namazi, J. Ind. Eng. Chem., 112, 335 (2022).
20. A. Ghendov-Mosanu, E. Cristea, A. Patraș, R. Sturza, S. Pădureanu,O. Deseatnicova and M. Niculaua, Molecules, 25, 1272 (2020).
21. A. Vilas-Franquesa, J. Saldo and B. Juan, Food Prod. Process. Nutr.,2, 1 (2020).
22. N. Castejón, P. Luna and F. J. Señoráns, Food Chem., 244, 75 (2018).
23. T. A. Toda, M. M. Barreiro, G. B. da Cunha and C. E. da Costa Rodrigues, J. Ind. Eng. Chem., 118, 268 (2023).
24. A. A. Martínez-Delgado, J. de Anda, J. M. León-Morales, J. C. Mateos-Díaz, A. Gutiérrez-Mora and J. J. Castañeda-Nava, Environ. Eng. Res., 27, 200619 (2022).
25. A. Vilas-Franquesa, B. Juan and J. Saldo, LWT, 164, 113643 (2022).
26. L. T. Danh, L. N. Han, N. D. A. Triet, J. Zhao, R. Mammucari and N. Foster, Food Bioproc. Tech., 6, 348 (2013).
27. A.G. Sicaire, M.A. Vian, A. Filly, Y. Li, A. Bily and F. Chemat, Alternative solvents for natural products extraction, Springer-Verlag Berlin, 315 (2014).
28. A. Ranjith, K. S. Kumar, V. Venugopalan, C. Arumughan, R. Sawhney and V. J. Singh, Am. Oil Chem.' Soc., 83, 359 (2006).
29. E. Christaki, E. Bonos, I. Giannenas and P. Florou-Paneri, Agriculture, 2, 228 (2012).
30. M. Teleszko and A. Wojdyło, J. Func. Foods, 14, 736 (2015).
31. M. A. Pugachevskii, V. A. Mamontov, A. V. Syuy and A. P. Kuzmenko, J. Ind. Eng. Chem., 106, 74 (2022).
32. T. Michel, E. Destandau, G. Le Floch, M. E. Lucchesi and C. Elfakir, Food Chem., 131, 754 (2012).
33. D. K. Choudhary, and A. Mishra, Bioengineered, 8, 393 (2017).
34. G. L. Huang, J. J. Ma, S. Y. Sui and Y. N. Wang, Bioengineered, 11, 281 (2020).
35. K. Neha, M. R. Haider, A. Pathak and M. S. Yar, Eur. J. Med. Chem.,178, 687 (2019).
36. A. Szydłowska-Czerniak, G. Karlovits, C. Dianoczki, K. Recseg and E. Szłyk, J. Am. Oil Chem. Soc., 85, 141 (2008).
37. N. Sanwal, S. Mishra, J. K. Sahu and S. N. Naik, Lebensm. Wiss. Technol., 153, 112386 (2022).
38. C. Radulescu, R. L. Olteanu, C. Stihi, M. Florescu, D. Lazurca, I. D. Dulama and S. Teodorescu, Anal. Lett., 52, 2393 (2019).
39. H. Zheng, L. Mao, J. Yang, C. Zhang, S. Miao and Y. Gao, J. Food Qual., 1540925 (2020).
40. I. Sytařová, J. Orsavová, L. Snopek, J. Mlček, Ł. Byczyński and L. Mišurcová, Food Chem., 310, 125784 (2020).
41. P. Negi, A. Chauhan, G. Sadia, Y. Rohinishree and R. Ramteke,Food Chem., 92, 119 (2005).
42. A. Borges, H. José, V. Homem and M. Simões, Antibiotics, 9, 48 (2020).
43. I. Pagano, L. Campone, R. Celano, A. L. Piccinelli and L. Rastrelli, J. Chromatogr. A, 1651, 462295 (2021).
44. M. Y. Yoon, J. S. Oh, H. Kang and J. K. Park, Korean J. Chem. Eng.,29, 1069 (2012).
45. A.Vilas-Franquesa, J. Saldo and B. Juan, J. Food Compos. Anal., 114, 104752 (2022).
46. C. Damian, A. Leahu, M. Oroian, M. Avramiuc and N. Carpiuc, Lucrări Științifice-Universitatea de Științe Agricole și Medicină Veterinară, Seria Zootehnie., 67 (2013).
47. L. D. Kagliwal, S. C. Patil, A. S. Pol, R. S. Singhal and V. B. Patravale, Sep, Purif. Technol., 80, 533 (2011).
48. H. Kallio, B. Yang and P. Peippo, J. Agric. Food Chem., 50, 6136 (2002).
49. M. Y. Kumar, R. Dutta, D. Prasad and K. Misra, Food Chem., 127, 319 (2011).
50. K. Tkacz, A. Wojdyło, I. P. Turkiewicz, Ł. Bobak and P. Nowicka, Antioxidants, 8, 618 (2019).
51. N. Akhtar, B. A. Khan, T. Mahmood, R. Parveen, M. Qayum and M. Anwar, J. Pharm Bioallied Sci., 2, 13 (2010).
52. M. Mehta, V. Kant and C. Varshneya, J. Complement. Med. Res., 2, 99 (2013).
53. Y. Liu, Q. Zhou, Y. M. He, X. Y. Ma, L. N. Liu and Y. J. Ke, Korean J. Chem. Eng., 38, 1669 (2021).
54. C. Sharma, S. Ansari, M. S. Ansari and S. P. Satsangee, J. Ind. Eng. Chem., 111, 499 (2022).
55. B. Skalski, B. Lis, Ł. Pecio, B. Kontek, B. Olas, J. Żuchowski and A. Stochmal, Food Chem. Toxicol., 125, 614 (2019).
56. K. Tiitinen, M. Vahvaselkä, M. Hakala, S. Laakso and H. Kallio, Eur. Food Res. Technol., 222, 686 (2006).
57. A. Krishnan, Korean J. Chem. Eng., 39, 2861 (2022).
58. M. J. Realff, Y. J. Min, C. W. Jones and R. P. Lively, Korean J. Chem. Eng., 38, 2375 (2021)