Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 9, 2023
Revised June 8, 2023
Accepted June 19, 2023
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Iron-loaded carbon derived from separated microplastics for heterogeneous Fenton degradation of tetracycline hydrochloride
Abstract
Microplastics are gaining growing research interest due to their significant potential threats to ecosystems
and public health. Physical techniques have been proposed as a promising strategy for removing microplastics from the
environment. This work innovatively proposes a process of microplastic removal by froth flotation and subsequent carbonization for synthesis of heterogeneous Fenton catalyst. The feasibility of separating different microplastics from
water was verified by froth flotation, and iron-loaded carbon derived from separated microplastics was fabricated as
catalyst. Carbon material was obtained by carbonization of microplastics, and iron loading was conducted to improve
catalytic ability. The catalyst of iron-loaded iron was characterized by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The degradation of tetracycline hydrochloride in the heterogeneous Fenton system was evaluated by single factor experiment and kinetic analysis. The catalytic performance was mainly influenced by H2O2
concentration, solution pH, and co-existing ions. Under the conditions of catalyst 20 mg/L, H2O2 concentration 0.99
mmol/L, initial tetracycline hydrochloride concentration 20 mg/L, pH 4.0, and temperature 25 o
C, the removal rate of
tetracycline hydrochloride within 15 min reached 81.6%, and the rate constant was 0.138 min1
. The catalytic mechanism dominated by hydroxyl radical was verified for the degradation of tetracycline hydrochloride. This work offers
insights into the management of microplastics and sustainable treatment of antibiotic wastewater
References
2. C. G. Joseph, Y. H. Taufiq-Yap, N. A. Affandi, J. L. H. Nga and V.Vijayan, Korean J. Chem. Eng., 39(3), 484 (2022).
3. K. Tian, L. Hu, L. Li, Q. Zheng, Y. Xin and G. Zhang, Chin. Chem.Lett., 33(10), 4461 (2022).
4. M. A. Uddin, B. H. Sutonu, M. A. Rub, S. Mahbub, M. M. Alotaibi,A. M. Asiri and M. Kabir, Korean J. Chem. Eng., 39(3), 664 (2022).
5. A. Balakrishnan, M. Chinthala, R. K. Polagani and D.-V. N. Vo,Environ. Res., 216(Pt 3), 114660 (2023).
6. A. R. Bracamontes-Ruelas, L. A. Ordaz-Díaz, A. M. Bailón-Salas,J. C. Ríos-Saucedo, Y. Reyes-Vidal and L. Reynoso-Cuevas, Processes, 10(5), 1041 (2022).
7. L. Wang, H. Jiang, H. Wang, P. L. Show, A. Ivanets, D. Luo and C.Wang, J. Environ. Chem. Eng., 10(6), 108954 (2022).
8. A. Hojjati-Najafabadi, A. Aygun, R. N. E. Tiri, F. Gulbagca, M. I.Lounissaa, P. Feng and F. Sen, Ind. Eng. Chem. Res., 62(11), 4655
(2023).
9. E. Baladi, F. Davar and A. Hojjati-Najafabadi, Environ. Res., 215,114270 (2022).
10. M. Mansoorianfar, H. Nabipour, F. Pahlevani, Y. Zhao, Z. Hussain,A. Hojjati-Najafabadi and R. Pei, Environ. Res., 214(Pt 4), 114113 (2022).
11. M. A. Browne, P. Crump, S. J. Niven, E. Teuten, A. Tonkin, T. Galloway and R. Thompson, Environ. Sci. Technol., 45(21), 9175 (2011).
12. Y. J. Lee, J. W. Yang, B. Choi, S. J. Park, C. G. Lee and E. H. Jho,Korean J. Chem. Eng., 40(3), 612 (2023).
13. C. M. Rochman, Science, 360(6384), 28 (2018).
14. H. Golwala, X. Zhang, S. M. Iskander and A. L. Smith, Sci. Total Environ., 769, 144581 (2021).
15. Y. Zhang, H. Jiang, K. Bian, H. Wang and C. Wang, Sci. Total Environ., 792, 148345 (2021).
16. G. Zhou, Q. Wang, J. Li, Q. Li, H. Xu, Q. Ye, Y. Wang, S. Shu and J.Zhang, Sci. Total Environ., 752, 141837 (2021).
17. M. Malankowska, C. Echaide-Gorriz and J. Coronas, Environ. Sci.:Water Res. Technol., 7(2), 243 (2021).
18. L. Fu, J. Li, G. Wang, Y. Luan and W. Dai, Ecotoxicol. Environ. Saf.,217, 112207 (2021).
19. H. Jiang, Y. Zhang, K. Bian, H. Wang and C. Wang, J. Environ.Chem. Eng., 10(3), 107834 (2022).
20. Y. Zhang, H. Jiang, K. Bian, H. Wang and C. Wang, J. Environ.Chem. Eng., 9(4), 105463 (2021).
21. H. Jiang, Y. Zhang, K. Bian, C. Wang, X. Xie, H. Wang and H.Zhao, Chem. Eng. J., 448, 137692 (2022).
22. C. Wang, R. Sun and R. Huang, J. Cleaner Prod., 297, 126681 (2021).
23. H. Wang, C. Wang, J. Fu and G. Gu, Colloids Surf., A., 424, 10 (2013).
24. H. Feilin and S. Mingwei, Process Saf. Environ. Prot., 168, 613 (2022).
25. H. Jiang, J. Bu, K. Bian, J. Su, Z. Wang, H. Sun, H. Wang, Y. Zhang and C. Wang, Water Res., 233, 119794 (2023). 26. Y. Pan, I. Gresham, G. Bournival, S. Prescott and S. Ata, Powder Technol., 397, 117028 (2022).
27. A. Bahrami, Y. Ghorbani, M. R. Hosseini, F. Kazemi, M. Abdollahi and A. Danesh, Mining Metall. Explor., 36(2), 409 (2019).
28. C. Wang, R. Huang, R. Sun, J. Yang and D.D. Dionysiou, J. Cleaner Prod., 330, 129901 (2022).
29. C. Wang, R. Sun, R. Huang and H. Wang, Sep. Purif. Technol., 270,118773 (2021).
30. R. Sun, X. Zhang, C. Wang and Y. Cao, J. Environ. Chem. Eng., 9(4),105368 (2021).
31. J. Dai, X. Meng, Y. Zhang and Y. Huang, Bioresour. Technol., 311,123455 (2020).
32. C. Wang, J. Yang, R. Huang and Y. Cao, J. Cent. South Univ., 29(12),3884 (2022).
33. M. Cheng, Y. Liu, D. Huang, C. Lai, G. Zeng, J. Huang, Z. Liu, C.Zhang, C. Zhou, L. Qi, W. Xiong, H. Yi and Y. Yang, Chem. Eng. J.,362, 865 (2019).
34. Y. Ren, J. Yu, J. Zhang, L. Lv and W. Zhang, Appl. Catal., B., 299,120697 (2021).
35. X. Sun, X. Ni, X. Wang and D. Xu, Surf. Interfaces, 31, 102053 (2022).
36. M. González-Davila, J. M. Santana-Casiano and F. J. Millero, Geochim. Cosmochim. Acta, 69(1), 83 (2005).
37. S. Chen, P. Xiong, W. Zhan and L. Xiong, Miner. Eng., 122, 38 (2018).
38. L. Wang, D. Luo, J. Yang and C. Wang, J. Cleaner Prod., 375, 134118 (2022). 39. L. Hu, G. Zhang, M. Liu, Q. Wang and P. Wang, Chem. Eng. J., 338,300 (2018).
40. J. Huang, M. Wang, S. Luo, Z. Li and Y. Ge, Environ. Res., 219,115166 (2023).
41. S. Wang and J. Wang, Chem. Eng. J., 351, 688 (2018).
42. D.-H. Xie, P.-C. Guo, K.-Q. Zhong and G.-P. Sheng, Appl. Catal.,B., 319, 121923 (2022).
43. H.-Y. Xu, Y. Xu, S.-Q. Zhang, L.-Y. Dai and Y. Wang, Mater. Lett.,337, 133985 (2023).
44. Y. Zhu, Q. Xie, R. Zhu, Y. Lv, Y. Xi, J. Zhu and J. Fan, Chemosphere, 287, 131933 (2022).
45. Y. Liu, J. Li, L. Wu, D. Wan, Y. Shi, Q. He and J. Chen, Sci. Total Environ., 761, 143956 (2021).
46. X. Li, X. Zhang, S. Wang, P. Yu, Y. Xu and Y. Sun, J. Environ. Manage., 312, 114856 (2022).
47. W. Hua and Y. Kang, Korean J. Chem. Eng., 40(5), 1122 (2023).