ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 29, 2022
Revised April 6, 2023
Accepted May 1, 2023
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Polymeric membranes for the oxygen enrichment of air in sulfur recovery units: Prevention of catalyst deactivation through BTX reduction

Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
rajaees@um.ac.ir
Korean Journal of Chemical Engineering, December 2023, 40(12), 2929-2940(12), 10.1007/s11814-023-1487-y
downloadDownload PDF

Abstract

The modified Claus process is one of the most commonly used methods for hydrogen sulfide conversion into sulfur. However, one of the problems of this unit is the presence of benzene, toluene, and xylene (BTX) compounds at the inlet of the catalytic reactors that can deactivate the catalyst and decrease the efficiency of the sulfur recovery unit. One of the methods of BTX destruction in a furnace is to increase its temperature by increasing the oxygen concentration in the inlet air. In the present work, the application of polymeric membranes for the destruction of BTX was investigated by modeling and simulating a sulfur recovery unit and a membrane unit. The numerical results obtained from the simulations were validated successfully with industrial and experimental data for both sulfur recovery and membrane units. The simulation results for an industrial case study indicate that using five PI carbon membrane units with a total area of 26.82 m2 can increase the concentration of oxygen in the inlet air to a level of 60%. In this condition, the reduction in BTX compounds can also be increased up to 59%. Furthermore, for two-stage membrane configuration, by employing five two-stage membrane units with a total area of 58.3 m2 , the oxygen concentration increases to 82%, and the reduction in BTX compounds will be 75%

References

1. J. H. Yang, Korean J. Chem. Eng., 38(4), 674 (2021).
2. S. Ibrahim, R. K. Rahman and A. Raj, Appl. Therm. Eng., 156, 576 (2019).
3. E. Keshavarz, D. Toghraie and M. Haratian, Appl. Therm. Eng., 123,277 (2017).
4. M. A. Zahid, M. Ahsan, I. Ahmad and M. N. Aslam Khan, Mathematics, 10(1), 88 (2022).
5. R. K. Rahman, S. Ibrahim and A. Raj, Chem. Eng. Sci., 155, 348 (2016).
6. Y. Li, Q. Guo, Z. Dai, Y. Dong, G. Yu and F. Wang, Appl. Therm. Eng., 117, 659 (2017).
7. B. Mahmoodi, S. H. Hosseini, G. Ahmadi and A. Raj, Appl. Therm. Eng., 123, 699 (2017).
8. P. Abdoli, S. A. Hosseini and M. A. Mujeebu, Forsch. Ingenieurwes, 83, 81 (2019).
9. S. Ibrahim, A. Jagannath and A. Raj, J. Nat. Gas. Sci. Eng., 83, 103581 (2020).
10. M. H. Ahmadi, M. Mehrpooya and F. Pourfayaz, Appl. Therm. Eng., 109, 640 (2016).
11. M. Khudenko, G. M. Hitman and T. E. P. Wechsler, J. Environ. Eng., 119(6), 1233 (1993).
12. B. ZareNezhad, J. Ind. Eng. Chem., 15(2), 143 (2009).
13. S. Zarei, H. Ganji, M. Sadi and M. Rashidzadeh, Appl. Therm. Eng., 103, 1095 (2016).
14. H. Ghahraloud, M. Farsi and M. R. Rahimpour, J. Taiwan. Inst. Chem. Eng., 76, 1 (2017).
15. H. Kazempour, F. Pourfayaz and M. Mehrpouya, J. Nat. Gas. Sci. Eng., 38, 235 (2017).
16. S. Ibrahim, R.K. Rahman and A. Raj, Abu Dhabi International Petroleum Exhibition & Conference, OnePetro (2018), https://doi.org/ 10.2118/192771-MS.
17. H. Ghahraloud, M. Farsi and M. R. Rahimpour, Chem. Prod. Process. Model., 14(2) (2019).
18. R. K. Rahman, S. Ibrahim and A. Raj, Comput. Chem. Eng., 128, 21 (2019).
19. M. Al Hamadi, S. Ibrahim and A. Raj, Ind. Eng. Chem. Res., 58(36),16489 (2019).
20. B. ZareNezhad and N. Hosseinpour, Appl. Therm. Eng., 28, 738 (2008).
21. S. Ibrahim, R. K. Rahman and A. Raj, Appl. Therm. Eng., 156, 576 (2019).
22. S. Ibrahim, M. Al Hamadi and A. Raj, Ind. Eng. Chem. Res., 59(11), 4912 (2020).
23. A. Y. Ibrahim, Pet. Petro. Chem. Eng J., 5(1), 1 (2021).
24. N. Abumounshar, A Raj and S. Ibrahim, Chem. Eng. Sci., 248(B),117194 (2022).
25. B. Adhikari, C. J. Orme, J. R. Klaehn and F. F. Stewart, Sep. Purif.Technol., 268, 118703 (2021).
26. I. S. Moon, D. I. Lee, J. H. Yang and H. W. Ryu, Korean J. Chem.Eng., 3 (1), 15 (1986).
27. S. Haider, A. Lindbråthen, J. A. Lie and M. B. Hägg, Sep. Purif. Technol., 205, 251 (2018).
28. P. K. Kundu, A. Chakma and X. Feng, Can. J. Chem. Eng., 99(5),1253 (2011).
29. X. Feng, J. Ivory and V. S. V. Rajan, AIChE J., 45(10), 2142 (1999).
30. S. Mokhatab, W. A. Poe and J. Y. Mak, Gulf Professional Publishing, 4th ed. (2018).
31. N. Javanmardi Nabikandi and S. Fatemi, J. Ind. Eng. Chem., 30, 50 (2015).
32. E. Kourosh and A. Shahsavand, Nashrieh Shimi va Mohandesi Shimi Iran, 33, 99 (2014).
33. J. Flowers, T. Chow and V. Wong, Sulphur, 333, 42 (2011).
34. M. Bozorg, B. Addis, V. Piccialli, Á. A. Ramírez-Santos, C. Castel,I. Pinnau and E. Favre, Chem. Eng. Sci., 207, 1196 (2019).
35. R. S. K. Valappil, N. Ghasem and M. Al-Marzouqi, J. Ind. Eng.Chem., 98, 103 (2021)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로