Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 29, 2022
Revised April 6, 2023
Accepted May 1, 2023
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Polymeric membranes for the oxygen enrichment of air in sulfur recovery units: Prevention of catalyst deactivation through BTX reduction
Abstract
The modified Claus process is one of the most commonly used methods for hydrogen sulfide conversion
into sulfur. However, one of the problems of this unit is the presence of benzene, toluene, and xylene (BTX) compounds at the inlet of the catalytic reactors that can deactivate the catalyst and decrease the efficiency of the sulfur
recovery unit. One of the methods of BTX destruction in a furnace is to increase its temperature by increasing the oxygen concentration in the inlet air. In the present work, the application of polymeric membranes for the destruction of
BTX was investigated by modeling and simulating a sulfur recovery unit and a membrane unit. The numerical results
obtained from the simulations were validated successfully with industrial and experimental data for both sulfur recovery and membrane units. The simulation results for an industrial case study indicate that using five PI carbon membrane units with a total area of 26.82 m2
can increase the concentration of oxygen in the inlet air to a level of 60%. In
this condition, the reduction in BTX compounds can also be increased up to 59%. Furthermore, for two-stage membrane configuration, by employing five two-stage membrane units with a total area of 58.3 m2
, the oxygen concentration increases to 82%, and the reduction in BTX compounds will be 75%
References
2. S. Ibrahim, R. K. Rahman and A. Raj, Appl. Therm. Eng., 156, 576 (2019).
3. E. Keshavarz, D. Toghraie and M. Haratian, Appl. Therm. Eng., 123,277 (2017).
4. M. A. Zahid, M. Ahsan, I. Ahmad and M. N. Aslam Khan, Mathematics, 10(1), 88 (2022).
5. R. K. Rahman, S. Ibrahim and A. Raj, Chem. Eng. Sci., 155, 348 (2016).
6. Y. Li, Q. Guo, Z. Dai, Y. Dong, G. Yu and F. Wang, Appl. Therm. Eng., 117, 659 (2017).
7. B. Mahmoodi, S. H. Hosseini, G. Ahmadi and A. Raj, Appl. Therm. Eng., 123, 699 (2017).
8. P. Abdoli, S. A. Hosseini and M. A. Mujeebu, Forsch. Ingenieurwes, 83, 81 (2019).
9. S. Ibrahim, A. Jagannath and A. Raj, J. Nat. Gas. Sci. Eng., 83, 103581 (2020).
10. M. H. Ahmadi, M. Mehrpooya and F. Pourfayaz, Appl. Therm. Eng., 109, 640 (2016).
11. M. Khudenko, G. M. Hitman and T. E. P. Wechsler, J. Environ. Eng., 119(6), 1233 (1993).
12. B. ZareNezhad, J. Ind. Eng. Chem., 15(2), 143 (2009).
13. S. Zarei, H. Ganji, M. Sadi and M. Rashidzadeh, Appl. Therm. Eng., 103, 1095 (2016).
14. H. Ghahraloud, M. Farsi and M. R. Rahimpour, J. Taiwan. Inst. Chem. Eng., 76, 1 (2017).
15. H. Kazempour, F. Pourfayaz and M. Mehrpouya, J. Nat. Gas. Sci. Eng., 38, 235 (2017).
16. S. Ibrahim, R.K. Rahman and A. Raj, Abu Dhabi International Petroleum Exhibition & Conference, OnePetro (2018), https://doi.org/ 10.2118/192771-MS.
17. H. Ghahraloud, M. Farsi and M. R. Rahimpour, Chem. Prod. Process. Model., 14(2) (2019).
18. R. K. Rahman, S. Ibrahim and A. Raj, Comput. Chem. Eng., 128, 21 (2019).
19. M. Al Hamadi, S. Ibrahim and A. Raj, Ind. Eng. Chem. Res., 58(36),16489 (2019).
20. B. ZareNezhad and N. Hosseinpour, Appl. Therm. Eng., 28, 738 (2008).
21. S. Ibrahim, R. K. Rahman and A. Raj, Appl. Therm. Eng., 156, 576 (2019).
22. S. Ibrahim, M. Al Hamadi and A. Raj, Ind. Eng. Chem. Res., 59(11), 4912 (2020).
23. A. Y. Ibrahim, Pet. Petro. Chem. Eng J., 5(1), 1 (2021).
24. N. Abumounshar, A Raj and S. Ibrahim, Chem. Eng. Sci., 248(B),117194 (2022).
25. B. Adhikari, C. J. Orme, J. R. Klaehn and F. F. Stewart, Sep. Purif.Technol., 268, 118703 (2021).
26. I. S. Moon, D. I. Lee, J. H. Yang and H. W. Ryu, Korean J. Chem.Eng., 3 (1), 15 (1986).
27. S. Haider, A. Lindbråthen, J. A. Lie and M. B. Hägg, Sep. Purif. Technol., 205, 251 (2018).
28. P. K. Kundu, A. Chakma and X. Feng, Can. J. Chem. Eng., 99(5),1253 (2011).
29. X. Feng, J. Ivory and V. S. V. Rajan, AIChE J., 45(10), 2142 (1999).
30. S. Mokhatab, W. A. Poe and J. Y. Mak, Gulf Professional Publishing, 4th ed. (2018).
31. N. Javanmardi Nabikandi and S. Fatemi, J. Ind. Eng. Chem., 30, 50 (2015).
32. E. Kourosh and A. Shahsavand, Nashrieh Shimi va Mohandesi Shimi Iran, 33, 99 (2014).
33. J. Flowers, T. Chow and V. Wong, Sulphur, 333, 42 (2011).
34. M. Bozorg, B. Addis, V. Piccialli, Á. A. Ramírez-Santos, C. Castel,I. Pinnau and E. Favre, Chem. Eng. Sci., 207, 1196 (2019).
35. R. S. K. Valappil, N. Ghasem and M. Al-Marzouqi, J. Ind. Eng.Chem., 98, 103 (2021)