Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 7, 2023
Revised April 19, 2023
Accepted May 3, 2023
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Application of machine learning and genetic algorithms to the prediction and optimization of biodiesel yield from waste cooking oil
Abstract
The synthesis and usage of biodiesel have become the focus of extensive research due to the ever-increasing emphasis on the development of sustainable and renewable sources. As biodiesel yield and quality depend on the
feedstocks used in transesterification, numerous process variables must be controlled at optimal levels to ensure high
productivity throughout the biodiesel synthesis process. This study provides three machine learning-based approaches
(Gradient boosting, eXtreme gradient boosting (XGB), and light gradient boosting machine (LGBM) regression) for
prediction and genetic algorithm (GA) for the optimization of biodiesel yield from waste cooking oil. Throughout the
modeling, training, testing, and cross-validation processes, supervised machine learning methods were used to analyze
the datasets exhaustively. Four performance indicators (MAE, RMSE, MAPE, and R2
) were used to evaluate and contrast the precision of the algorithms. Based on the findings of the coefficient of determination, the LGBM algorithm
has the highest prediction accuracy of 0.94048, followed by XGB with 0.8631 accuracy and gradient boosting with
0.8547accuracy. The optimal condition for producing biodiesel through GA was a molar ratio of 7.62 : 1 with a catalyst
concentration of 0.5 wt%, a reaction temperature of 65 o
C, and a reaction time of 105 min and the corresponding value
of the biodiesel yield was 98.98% (by wt.). Experiments confirmed this prediction, and with acceptable error, all results
are close to the model’s predicted values. The LGBM coupled with GA can be used as a strategic decision-support and
optimization tool for the production of high-quality biodiesel.
Keywords
References
2. J. C. Oraegbunam, N. B. Ishola, B. A. Sotunde, L. M. Latinwo and E. Betiku, Green Technol. Sustainability, 1(1), 100007 (2023).
3. D. K. Jana, S. Bhattacharjee, S. Roy, P. Dostál and B. Bej, Clean.Energy Syst., 3, 100033 (2022).
4. N. N. Mahamuni and Y. G. Adewuyi, Energy Fuels, 24, 3 (2010).
5. E. Betiku, O. R. Omilakin, S. O. Ajala, A. A. Okeleye, A. E. Taiwo and B. O. Solomon, Energy, 72, 266 (2014).
6. V. G. Deshmane and Y. G. Adewuyi, Fuel, 107, 474 (2013).
7. A. Sharma, P. Kodgire and S. S. Kachhwaha, J. Clean. Prod., 259,120982 (2020).
8. A. Attari, A. Abbaszadeh-Mayvan and A. Taghizadeh-Alisaraie, Biomass Bioenergy, 158, 106357 (2022).
9. G. R. Moradi, S. Dehghani, F. Khosravian and A. Arjmandzadeh,Renew. Energy, 50, 915 (2013).
10. D. K. Jana, S. Roy, P. Dey and B. Bej, Clean. Chem. Eng., 2, 100010 (2022).
11. D. N. Thoai, C. Tongurai, K. Prasertsit and A. Kumar, Int. J. Appl. Eng. Res., 13(10), 7529 (2018).
12. A. Sarve, S. S. Sonawane and M. N. Varma, Ultrason. Sonochem.,26, 218 (2015).
13. M. A. Ahmadi, Math. Probl. Eng., 2015, 1 (2015).
14. S. R. Moosavi, D. A. Wood, M. A. Ahmadi and A. Choubineh, Nat.Resour. Res., 28, 1619 (2019).
15. M. Ahmadi and Z. Chen, J. Pet. Explor. Prod. Technol., 10, 2873 (2020).
16. D. De Clercq, Z. Wen, F. Fei, L. Caicedo, K. Yuan and R. Shang,Sci. Total Environ., 712, 134574 (2020).
17. K. K. Gupta, K. Kalita, R. K. Ghadai, M. Ramachandran and X. Z.Gao, Energies, 14(4), 1122 (2021).
18. H. Moayedi, B. Aghel, L. K. Foong and D. T. Bui, Fuel, 262, 116498 (2020).
19. Y. Li, Y. Huang and F. Gao, J. Clean. Prod., 291, 125973 (2021).
20. M. Wang, S. Fan, Y. Cheng, J. Wang and J. Wang, Energy Conv.Manag., 249, 114601 (2021).
21. Y. Shen, Z. Li, H. Li and X. Li, Fuel, 278, 118344 (2020).
22. C. R. Khudsange and K. L. Wasewar, Int. J. Chem. Reactor Eng.,15(3) (2017).
23. M. Aghbashlo, W. Peng, M. Tabatabaei, S. A. Kalogirou, S. Soltanian, H. Hosseinzadeh-Bandbafha, O. Mahian and S. S. Lam, Prog.Energy Combust. Sci., 85, 100904 (2021).
24. M. Aghbashlo, S. Hosseinpour, M. Tabatabaei and M. M. Soufiyan, Fuel, 235, 100 (2019).
25. M. A. Ahmadi, R. Soleimani, M. Lee, T. Kashiwao and A. Bahadori, Petroleum, 1(2), 118 (2015).
26. M. Ramezanizadeh, M. A. Ahmadi, M. H. Ahmadi and M. Alhuyi Nazari, J. Therm. Anal. Calorim., 137, 307 (2019).
27. T. A. Khan, A. K. Tasmeem and K. Y. Ashok, Environ. Sci. Pollut.Res., 29(32), 49465 (2022).
28. B. Sajjadi, M. Davoody, A. R. Abdul Aziz and S. Ibrahim, Chem.Eng. Commun., 204(3), 365 (2017).
29. C. Li, Q. Li, Y. Li and Y. Wang, Energy Conv. Manag., 214, 173 (2020).
30. Z. Xia, X. Xiong, Z. Yu and C. Xu, J. Clean. Prod., 244, 118856 (2020).
31. M. C. Chiu, C. Y. Wen, H. W. Hsu and W. C. Wang, Sust. Energy Technol. Assessments, 52, 102223 (2022).
32. S. Chi, S. J. Suk, Y. Kang and S. P. Mulva, Adv. Eng. Informatics,26(3), 574 (2012).
33. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg and J.Vanderplas, J. Machine Learning Res., 12, 2825 (2011).
34. N. Bagalkot, A. Keprate and R. Orderløkken, Vibration, 4(1), 248 (2021).
35. M. Uluskan and M. G. Karşı, International Journal of Lean Six Sigma (2022).
36. R. Singh, A. Kumar, S. Kumar and A. Kumar, J. Renew. Energy,134, 85 (2019).
37. Y. Li, Z. Zhang, H. Xu and Y. Qian, Energies, 13(4), 860 (2020).
38. A. Shukla, A. K. Singh and S. Singh, Energy Sources, Part A: Recovery, Util., Environ. Eff., 44(2), 234 (2022).
39. S. Ramraj, N. Uzir, R. Sunil and S. Banerjee, Int. J. Control Theory Appl., 9, 40 (2016).
40. F. Kocyigit, S. I. Kirbaslar, E. Yavuz and M. Kocaarslan, Energy Sources, Part A: Recovery, Util, Environ. Eff., 42(16), 1947 (2020).
41. D. Singh, A. Kumar and V. Sachdeva, Int. J. Renew. Energy Res.(IJRER), 10(3), 1468 (2020).
42. S. Wu, Y. Chen, M. Wang and Y. Huang, J. Clean. Prod., 312, 127774 (2021).
43. A. Ahmad, A. K. Yadav, A. Singh and A. Pal, Proc. Inst. Mech. Eng.,Part E: J. Process Mech. Eng., 09544089231159832 (2023).
44. B. O. Ighose, I. A. Adeleke, M. Damos, H. A. Junaid, K. E. Okpalaeke and E. Betiku, Energy Conv. Manag., 132, 231 (2017).
45. T. Bhaskar, T. Balusamy and R. Karthikeyan, Fuel, 179, 259 (2016).
46. M. A. Kalam, H. H. Masjuki, N. W. M. Zulkifli, A. Alabdulkarem and Y. H. Teoh, J. Clean. Prod., 172, 3552 (2018).
47. D. O. Onukwuli, C. Esonye, A. U. Ofoefule and R. Eyisi, J. Taiwan Inst. Chem. Eng., 125, 153 (2021).