ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 7, 2023
Revised April 19, 2023
Accepted May 3, 2023
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Application of machine learning and genetic algorithms to the prediction and optimization of biodiesel yield from waste cooking oil

1Mechanical Engineering Department, Netaji Subhas University of Technology, New Delhi, India 2Department of Mechanical Engineering, Raj Kumar Goel Institute of Technology, Ghaziabad, India
aqueel.me20@nsut.ac.in
Korean Journal of Chemical Engineering, December 2023, 40(12), 2941-2956(16), 10.1007/s11814-023-1489-9
downloadDownload PDF

Abstract

The synthesis and usage of biodiesel have become the focus of extensive research due to the ever-increasing emphasis on the development of sustainable and renewable sources. As biodiesel yield and quality depend on the feedstocks used in transesterification, numerous process variables must be controlled at optimal levels to ensure high productivity throughout the biodiesel synthesis process. This study provides three machine learning-based approaches (Gradient boosting, eXtreme gradient boosting (XGB), and light gradient boosting machine (LGBM) regression) for prediction and genetic algorithm (GA) for the optimization of biodiesel yield from waste cooking oil. Throughout the modeling, training, testing, and cross-validation processes, supervised machine learning methods were used to analyze the datasets exhaustively. Four performance indicators (MAE, RMSE, MAPE, and R2 ) were used to evaluate and contrast the precision of the algorithms. Based on the findings of the coefficient of determination, the LGBM algorithm has the highest prediction accuracy of 0.94048, followed by XGB with 0.8631 accuracy and gradient boosting with 0.8547accuracy. The optimal condition for producing biodiesel through GA was a molar ratio of 7.62 : 1 with a catalyst concentration of 0.5 wt%, a reaction temperature of 65 o C, and a reaction time of 105 min and the corresponding value of the biodiesel yield was 98.98% (by wt.). Experiments confirmed this prediction, and with acceptable error, all results are close to the model’s predicted values. The LGBM coupled with GA can be used as a strategic decision-support and optimization tool for the production of high-quality biodiesel.

References

1. J.M. Cunha, A. S. Faria, T. Soares, Z. Mourão and J. Nereu, Clean.Energy Syst., 1, 100005 (2022).
2. J. C. Oraegbunam, N. B. Ishola, B. A. Sotunde, L. M. Latinwo and E. Betiku, Green Technol. Sustainability, 1(1), 100007 (2023).
3. D. K. Jana, S. Bhattacharjee, S. Roy, P. Dostál and B. Bej, Clean.Energy Syst., 3, 100033 (2022).
4. N. N. Mahamuni and Y. G. Adewuyi, Energy Fuels, 24, 3 (2010).
5. E. Betiku, O. R. Omilakin, S. O. Ajala, A. A. Okeleye, A. E. Taiwo and B. O. Solomon, Energy, 72, 266 (2014).
6. V. G. Deshmane and Y. G. Adewuyi, Fuel, 107, 474 (2013).
7. A. Sharma, P. Kodgire and S. S. Kachhwaha, J. Clean. Prod., 259,120982 (2020).
8. A. Attari, A. Abbaszadeh-Mayvan and A. Taghizadeh-Alisaraie, Biomass Bioenergy, 158, 106357 (2022).
9. G. R. Moradi, S. Dehghani, F. Khosravian and A. Arjmandzadeh,Renew. Energy, 50, 915 (2013).
10. D. K. Jana, S. Roy, P. Dey and B. Bej, Clean. Chem. Eng., 2, 100010 (2022).
11. D. N. Thoai, C. Tongurai, K. Prasertsit and A. Kumar, Int. J. Appl. Eng. Res., 13(10), 7529 (2018).
12. A. Sarve, S. S. Sonawane and M. N. Varma, Ultrason. Sonochem.,26, 218 (2015).
13. M. A. Ahmadi, Math. Probl. Eng., 2015, 1 (2015).
14. S. R. Moosavi, D. A. Wood, M. A. Ahmadi and A. Choubineh, Nat.Resour. Res., 28, 1619 (2019).
15. M. Ahmadi and Z. Chen, J. Pet. Explor. Prod. Technol., 10, 2873 (2020).
16. D. De Clercq, Z. Wen, F. Fei, L. Caicedo, K. Yuan and R. Shang,Sci. Total Environ., 712, 134574 (2020).
17. K. K. Gupta, K. Kalita, R. K. Ghadai, M. Ramachandran and X. Z.Gao, Energies, 14(4), 1122 (2021).
18. H. Moayedi, B. Aghel, L. K. Foong and D. T. Bui, Fuel, 262, 116498 (2020).
19. Y. Li, Y. Huang and F. Gao, J. Clean. Prod., 291, 125973 (2021).
20. M. Wang, S. Fan, Y. Cheng, J. Wang and J. Wang, Energy Conv.Manag., 249, 114601 (2021).
21. Y. Shen, Z. Li, H. Li and X. Li, Fuel, 278, 118344 (2020).
22. C. R. Khudsange and K. L. Wasewar, Int. J. Chem. Reactor Eng.,15(3) (2017).
23. M. Aghbashlo, W. Peng, M. Tabatabaei, S. A. Kalogirou, S. Soltanian, H. Hosseinzadeh-Bandbafha, O. Mahian and S. S. Lam, Prog.Energy Combust. Sci., 85, 100904 (2021).
24. M. Aghbashlo, S. Hosseinpour, M. Tabatabaei and M. M. Soufiyan, Fuel, 235, 100 (2019).
25. M. A. Ahmadi, R. Soleimani, M. Lee, T. Kashiwao and A. Bahadori, Petroleum, 1(2), 118 (2015).
26. M. Ramezanizadeh, M. A. Ahmadi, M. H. Ahmadi and M. Alhuyi Nazari, J. Therm. Anal. Calorim., 137, 307 (2019).
27. T. A. Khan, A. K. Tasmeem and K. Y. Ashok, Environ. Sci. Pollut.Res., 29(32), 49465 (2022).
28. B. Sajjadi, M. Davoody, A. R. Abdul Aziz and S. Ibrahim, Chem.Eng. Commun., 204(3), 365 (2017).
29. C. Li, Q. Li, Y. Li and Y. Wang, Energy Conv. Manag., 214, 173 (2020).
30. Z. Xia, X. Xiong, Z. Yu and C. Xu, J. Clean. Prod., 244, 118856 (2020).
31. M. C. Chiu, C. Y. Wen, H. W. Hsu and W. C. Wang, Sust. Energy Technol. Assessments, 52, 102223 (2022).
32. S. Chi, S. J. Suk, Y. Kang and S. P. Mulva, Adv. Eng. Informatics,26(3), 574 (2012).
33. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg and J.Vanderplas, J. Machine Learning Res., 12, 2825 (2011).
34. N. Bagalkot, A. Keprate and R. Orderløkken, Vibration, 4(1), 248 (2021).
35. M. Uluskan and M. G. Karşı, International Journal of Lean Six Sigma (2022).
36. R. Singh, A. Kumar, S. Kumar and A. Kumar, J. Renew. Energy,134, 85 (2019).
37. Y. Li, Z. Zhang, H. Xu and Y. Qian, Energies, 13(4), 860 (2020).
38. A. Shukla, A. K. Singh and S. Singh, Energy Sources, Part A: Recovery, Util., Environ. Eff., 44(2), 234 (2022).
39. S. Ramraj, N. Uzir, R. Sunil and S. Banerjee, Int. J. Control Theory Appl., 9, 40 (2016).
40. F. Kocyigit, S. I. Kirbaslar, E. Yavuz and M. Kocaarslan, Energy Sources, Part A: Recovery, Util, Environ. Eff., 42(16), 1947 (2020).
41. D. Singh, A. Kumar and V. Sachdeva, Int. J. Renew. Energy Res.(IJRER), 10(3), 1468 (2020).
42. S. Wu, Y. Chen, M. Wang and Y. Huang, J. Clean. Prod., 312, 127774 (2021).
43. A. Ahmad, A. K. Yadav, A. Singh and A. Pal, Proc. Inst. Mech. Eng.,Part E: J. Process Mech. Eng., 09544089231159832 (2023).
44. B. O. Ighose, I. A. Adeleke, M. Damos, H. A. Junaid, K. E. Okpalaeke and E. Betiku, Energy Conv. Manag., 132, 231 (2017).
45. T. Bhaskar, T. Balusamy and R. Karthikeyan, Fuel, 179, 259 (2016).
46. M. A. Kalam, H. H. Masjuki, N. W. M. Zulkifli, A. Alabdulkarem and Y. H. Teoh, J. Clean. Prod., 172, 3552 (2018).
47. D. O. Onukwuli, C. Esonye, A. U. Ofoefule and R. Eyisi, J. Taiwan Inst. Chem. Eng., 125, 153 (2021).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로