Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 12, 2023
Revised July 18, 2023
Accepted August 24, 2023
- Acknowledgements
- The authors gratefully acknowledge Ondokuz Mayis University for the financial support through the project numbered as PYO.MUH.1901.18.003.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Experimental and factorial study on gas separation properties of PLA-based green composite membranes
Abstract
Polylactide acid (PLA) is a biocompatible sustainable material with notable characteristics due to its good
mechanical properties and low environmental impact. The present study investigated the effects of PLA-based green
membranes on gas separation and identified the best factor condition for the membrane. Prepared membranes were
tested to determine oxygen (O2) and carbon dioxide (CO2) gas permeability properties. Oxygen gas permeability of the
PLA/PEG/HA membrane obtained by drying for two days was increased from 100 kPa to 400 kPa; the permeability
value of this membrane increased by 15%. On the other hand, the oxygen permeability value of the membrane prepared by dry for three days under the same pressure conditions and ambient temperature increased by 5%. This result
indicates that the permeabilities of prepared membranes for O2 gas increase with increasing feed pressures. On the
other hand, it was observed that the CO2 permeability decreased by 38.83% with the increase in pressure and drying
time due to the plasticizing and swelling effect of carbon dioxide on the membrane. A factorial design was also constructed from experimental data and applied to determine the interactions of experimental parameters. All of the
parameter interactions were of statistical significance for permeability. It is further argued that molecular weight has a
significant positive effect on permeability, while dry time and pressure have just a slight negative effect. This study
could contribute to further studies by reducing the number of tests necessary to understand the characteristics and gas
separation performance of green materials.
References
2. R. Liu, R. N. Jadeja, Q. Zhou and Z. Liu, Environ. Eng. Sci., 29, 494 (2012).
3. P. K. Bajpai, I. Singh and J. Madaan, J. Thermoplast. Compos. Mater.J., 27, 52 (2014).
4. E. L. Sánchez-Safont, A. Aldureid, J. M. Lagarón, J. Gámez-Pérez and L. Cabedo, Compos. B. Eng., 145, 215 (2018).
5. Vinod, M. R. Sanjay, S. Suchart and P. Jyotishkumar, J. Clean. Prod.,258, 120978 (2020).
6. M. Jamshidian, E. A. Tehrany, M. Imran, M. Jacquot and S. Desobry, Compr. Rev. Food Sci. Food Saf., 9, 552 (2010).
7. V. M. A. Valantin, C. Aubron-Olivier, J. Ghosn, E. Laglenne, M.Pauchard, H. Schoen and C. Katlama, Aids, 17, 2471 (2003).
8. S. Ahmed, S. Ikram, S. Kanchi and K. Bisetty (Eds.), Biocomposites: biomedical and environmental applications, CRC Press (2018).
9. B. Gupta, N. Revagade and J. Hilborn, Prog. Polym. Sci., 32, 455 (2007).
10. F. La Mantia and M. Morreale, Compos. - A: Appl. Sci., 42, 579 (2011).
11. V. Mazzanti and F. Mollica, Polym. Compos., 40, E169 (2019).
12. Z. Ma, C. Gao, J. Ji and J. Shen, Eur. Polym. J., 38, 2279 (2002).
13. R. Auras, B. Harte and S. Selke, Macromol. Biosci., 4, 835 (2004).
14. M. Persson, G.S. Lorite, H.E. Kokkonen, S.W. Cho, P.P. Lehenkari,M. Skrifvars and J. Tuukkanen, Colloids Surf. B, 121, 409 (2014).
15. O. Laput, I. Vasenina, M. C. Salvadori, K. Savkin, D. Zuza and I.Kurzina, J. Mater. Sci., 54, 11726 (2019).
16. A. Zimina, F. Senatov, R. Choudhary, E. Kolesnikov, N. Anisimova,M. Kiselevskiy and A. Karyagina, Polymers, 12, 2938 (2020).
17. S. Essa, J. M. Rabanel and P. Hildgen, Eur. J. Pharm. Biopharm., 75,96 (2010).
18. S. Momeni, E. Rezvani Ghomi, M. Shakiba, S. Shafiei-Navid, M.Abdouss, A. Bigham and S. Ramakrishna, Polymers, 13, 1019 (2021).
19. M. Nele, A. Vidal, D. L. Bhering, J. C. Pinto and V. M. M. Salim,Appl. Catal., 178, 177 (1999).
20. S. Sadudeethanakul, W. Wattanutchariya, W. Nakkiew, A. Chaijaruwanich and S. Pitjamit, OP Conf. Ser.: Mater. Sci. Eng., 635, 012004 (2019).
21. B. C. Y Lee, M. S. Mahtab, T. H. Neo, I. H. Farooqi and A. Khursheed, Water Process. Eng., 47, 102673 (2022).
22. N. M. Moo-Tun, G. Iñiguez-Covarrubias and A. Valadez-Gonzalez, Polym. Test., 86, 106482 (2020).
23. P. Watcharaprapapong, W. Nakkiew, W. Wattanuchariya and S. Pitjamit, MATEC Web Conf., 192, 01049 (2018).24. W. Zhang, N. Cao, Y. Chai, X, Xu and Y. Wang, Ceram. Int., 40,16061 (2014).
25. M. Fathi and A. Hanifi, Mater. Lett., 61, 3978 (2007).
26. S. Waheed, M. Sultan, T. Jamil and T. Hussain, Mater. Today: Proc.,2, 5477 (2015).
27. M. Robles-Águila, J. Reyes-Avendaño and M. Mendoza, Ceram.Int., 43, 12705 (2017).
28. H. A. Ozen and B. Ozturk, Sep. Purif. Technol., 211, 514 (2019).
29. R. Lin, MOFs-based mixed matrix membranes for gas separation,Doktoral Thesis, The University of Qeensland, Australia (2016).
30. D. Bingol, N. Tekin and M. Alkan, Appl. Clay Sci., 50, 315 (2010).
31. B. W. Chieng, N. A. Ibrahim, W. M. Z. Wan Yunus, M. Z. Hussein,Y. Y. Then and Y. Y. Loo, Polymers, 6, 2232 (2014).
32. M. A. Cuiffo, J. Snyder, A. M. Elliott, N. Romero, S. Kannan and G. P. Halada, Appl. Sci., 7, 579 (2017).
33. Y. Xiao, D. Li, H. Fan, X. Li, Z. Gu and X. Zhang, Mater. Lett., 61,59 (2007).
34. K. M. Choi, S. W. Lim, M. C. Choi, Y. M. Kim, D. H. Han and C. S.Ha. Polym. Bull., 71, 3305 (2014).
35. A. Angelopoulou, E. Voulgari, E. K. Diamanti, D. Gournis and K.Avgoustakis, Eur. J. Pharm. Biopharm., 93, 18 (2015).
36. R. H. A Haq, O. M. F Marwah, M. N. A. Rahman, F. H. Ho, H.Abdullah, S. Ahmad and M. Z. Yunos, Int. J. Integr. Eng., 10, 187 (2018).
37. X. Zhang, Y. Li, G. Lv, Y. Zuo and Y. Mu, Polym. Degrad. Stab., 91,1202 (2006).
38. J. Zhang, S. Wang, D. Zhao, Y. Zhang, W. Pang, B. Zhang and Q. Li, J. Appl. Polym. Sci., 134, 45194 (2017).
39. J. D. Wind, D. R. Paul and W. J. Koros, J. Membr. Sci., 228, 227 (2004).
40. A. M. Hillock and W. J. Koros, Macromolecules, 40, 583 (2007).
41. A. M. Kratochvil and W. J. Koros, Macromolecules, 41, 7920 (2008).
42. Y. Li and C. Park, Ind. Eng. Chem. Res., 48, 6633 (2009).
43. M. Mihai, M. A. Huneault and B. D. Favis, J. Appl. Polym. Sci., 113, 2920 (2009).
44. L. Yu, H. Liu and K. Dean, Polym. Int., 58, 368 (2009).
45. M. Nofar, A. Tabatabaei and C. B. Park, Polymer, 54, 2382 (2013).
46. D. C. Li, T. Liu, L. Zhao, X. S. Lian and W. K. Yuan, Ind. Eng. Chem.Res., 50, 1997 (2011).
47. H. E. Naguib, C. B. Park, S. W. Song, Ind. Eng. Chem. Res., 44, 6685 (2005).
48. V. Ponnusami, V. Krithika, R. Madhuram and S. N. Srivastava, J. Hazard. Mater., 142, 397 (2007).
49. S. Saadat and A. Karimi-Jashni, J. Chem. Eng., 173, 743 (2011).
50. D. C. Montgomery, Design and analysis of experiments, John Wiley & Sons (2017).