Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 21, 2023
Revised July 21, 2023
Accepted August 6, 2023
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Conductivity enhancement in K+ -ion conducting solid polymer electrolyte [PEG : KNO3] and its application as an electrochemical cell
Abstract
The solution-cast method was used to prepare new solid polymer electrolytes (SPEs) that conduct potassium ions and are based on polyethylene glycol (PEG) complexed with potassium nitrate (KNO3). This polymer electrolyte system was characterized using different experimental techniques, such as X-ray diffraction (XRD), differential
scanning calorimetry (DSC), composition vs. conductivity, temperature vs. conductivity, frequency-dependent conductivity, and dielectric measurements. The degree of crystallinity decreased with increasing salt concentration, according
to the X-ray diffraction and DSC patterns of PEG with KNO3 salt. For PEG : KNO3 (80 : 20) composition, an optimum conductivity of 8.24×106 S/cm was recorded at 30 o
C. Compared with pure PEG, the optimum conducting composition (OCC) conductivity increased by two orders of magnitude. The temperature range of 303 to 333 K was used
for the temperature-dependent conductivity experiments. The findings demonstrate that the conductivity obeys the
Arrhenius rule and increases as the temperature rises. A dc plateau and a dispersive zone were observed in the conductance spectrum, which also follows Jonscher’s power law. It was investigated how temperature and frequency affect the
dielectric permittivity. An electrochemical cell with the configuration K/(80PEG : 20KNO3)/(I2+C+electrolyte) was
constructed using an 80 : 20 electrolyte system, and its discharge properties were investigated. The cell’s open circuit
voltage was measured at 2.48 V.
References
2. S. H. Woo, S. Kim, S. Woo, S. H. Park, Y. S. Kang, N. Jung and S. D.Yim, Korean J. Chem. Eng., (2023) https://doi.org/10.1007/s11814-023-1474-3.
3. M. Hwang, J. S. Jeong, J. C. Lee, S. Yu, H. S. Jung, B. S. Cho and K. Y. Kim, Korean J. Chem. Eng., 38, 454 (2021).
4. R. Singh, A. R. Polu, B. Bhattacharya, H. W. Rhee, C. Varlikli and P. K. Singh, Renew. Sust. Energ. Rev., 65, 1098 (2016).
5. A. R. Polu, P. K. Singh, P. Siva Kumar, G. M. Joshi, T. Ramesh, I. M. Noor, A. Y. Madkhil and S. Kakroo, High Perform. Polym., 35, 4 (2023).
6. B. H. Lim, J. M. Kim, V. T. Nguyen, H. Kim, C. W. Park, J. K. Lee,C. H. Lee, J. Yoo, B. K. Min and S. K. Kim, Mater. Today, Energy,33, 101263 (2023).
7. J. P. Hoffknecht, A. Wettstein, J. Atik, C. Krause, J. Thienenkamp, G. Brunklaus, M. Winter, D. Diddens, A. Heuer and E. Paillard,Adv. Energy Mater., 13, 2202789 (2023).
8. D. E. Fenton, J. M. Parker and P. V. Wright, Polymer, 14, 589 (1973).
9. M. P. Armand, J. M. Chabagno and M. Diadat, “Fast Ion Transport in Solids” (Eds.) P. Vashistha, J. M. Mundy and G. K. Sheny,North Holland (1979).
10. Y. An, X. Han, Y. Liu, A. Azhar, J. Na, A. K. Nanjundan, S. Wang,J. Yu and Y. Yamauchi, Small, 18, 2103617 (2022).
11. F. Gebert, J. Knott, R. Gorkin III, S. L. Chou and S. X. Dou, Energy Stor. Mater., 36, 10 (2021).
12. N. M. Ali, A. A. Kareem and A. R. Polu, J. Inorg. Organomet. Polym.,32, 4070 (2022).
13. A. R. Polu, R. Kumar and G. M. Joshi, Ionics, 20, 675 (2014).
14. A. R. Polu and R. Kumar, Bull. Mater. Sci., 37, 309 (2014).
15. S. B. Aziz, R. M. Abdullah, M. F. Z. Kadir and H. M. Ahmed, Electrochim. Acta, 296, 494 (2019).
16. H. Yin, C. J. Han, Q. R. Liu, F. Y. Wu, F. Zhang and Y. B. Tang, Small,17, 2006627 (2021).
17. J. Gao, C. Wang, D. W. Han and D. M. Shin, Chem. Sci., 12, 13248 (2021).
18. A. R. Polu, H. W. Rhee, M. J. K. Reddy, A. M. Shanmugharaj, S. H.Ryu and D. K. Kim, J. Ind. Eng. Chem., 45, 68 (2017).
19. C. Devi, J. Gellanki, H. Pettersson and S. Kumar, Sci. Rep., 11, 20180 (2021).
20. W. Zhang, Y. Liu and Z. Guo, Sci. Adv., 5, 7412 (2019).
21. S. Trano, F. Corsini, G. Pascuzzi, E. Giove, L. Fagiolari, J. Amici, C.Francia, S. Turri, S. Bodoardo, G. Griffini and F. Bella, ChemSusChem, 15, e202200294 (2022).
22. Y. Xu, T. Ding, D. Sun, X. Ji and X. Zhou, Adv. Funct. Mater., 33,2211290 (2023).
23. M. Elmanzalawy, E. S. Ahijón, O. Kisacik, J. C. González and E. C. Martínez, ACS Appl. Energy Mater., 5, 9009 (2022).
24. H. Fei, Y. Liu, Y. An, X. Xu, J. Zhang, B. Xi, S. Xiong and J. Feng, J.Power Sources, 433, 226697 (2019).
25. J. Feng, L. Wang, Y. Chen, P. Wang, H. Zhang and X. He, Nano Convergence, 8, 2 (2021).
26. A. R. Polu and H. W. Rhee, Int. J. Hydrog. Energy, 42, 7212 (2017).
27. T. Sreekanth, M. J. Reddy, S. Subramanyam and U. V. Subba Rao,Mater. Sci. Eng. B, 64, 107 (1999).
28. D. Shanmukaraj and R. Murugan, J. Power Sources, 149, 90 (2005).
29. A. R. Polu and R. Kumar, J. Chem., 8, 628790 (2011).
30. C. S. Joshi, M. R. Shukla, K. Patel, J. S. Joshi and O. Sahu, Int. Lett.Chem. Phys. Astron., 2, 88 (2015).
31. R. M. Hodge, G. H. Edward and G. P. Simon, Polymer, 37, 1371 (1996).
32. H. M. Alghamdi and A. Rajeh, Int. J. Energy Res., 46, 20050 (2022).
33. N. M. Ghazali, A. F. Fuzlin, M. A. Saadiah, Md. M. Hasan, Y. Nagao and A. S. Samsudin, J. Non Cryst. Solids, 598, 121939 (2022).
34. J. Zhu, Z. Zhang, S. Zhao, A. S. Westover, I. Belharouak and P. F.Cao, Adv. Energy Mater., 11, 2003836 (2011).
35. W. H. Meyer, Adv. Mater., 10, 439 (1998).
36. P. Bashiri, T. Prasada Rao, V. M. Naik, G. A. Nazri and R. Naik,Solid State Ionics, 343, 115089 (2019).
37. M. B. Ahmed, S. B. Aziz and A. R. Murad, Ionics, 28, 5153 (2022).
38. M. Y. Chong, A. Numan, C. W. Liew, K. Ramesh and S. Ramesh, J.Appl. Polym. Sci., 134, 44636 (2016).
39. F. S. Howell, R. A. Bose, P. B. Macedo and C. T. Moynihan, J. Phys.Chem., 78, 639 (1974).
40. N. Tripathi, A. Shukla, A. K. Thakur and D. T. Marx, Electrical conduction in dispersed phase solid polymer electrolytes: The dielectric and electric modulus approach, (Eds.) J. E. House, In Developments in Physical & Theoretical Chemistry, Dynamic Processes in Solids, Elsevier (2023).
41. M. Irfan, A. Manjunath, S. S. Mahesh, R. Somashekar and T.Demappa, J. Mater. Sci: Mater. Electron., 32, 5520 (2021).
42. K. Zhang, J. Chen, W. Feng, C. Wang, Y. N. Zhou and Y. Xia, J.Power Sources, 553, 232311 (2023).
43. T. Sreekanth, M. J. Reddy and U. V. Subba Rao, J. Power Sources,93, 268 (2001)