Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 5, 2023
Revised June 20, 2023
Accepted July 12, 2023
- Acknowledgements
- We are grateful to Huntsman Performance Products and Bayer Group for their generous donation of Jeffamine® and triisocyanate crosslinker reagents, respectively. This research was funded by FAPESP grant no 2021/06552-1, CAPES - Finance Code 001, and CNPq no 307696/2021-9.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Polyurea membrane for water cleaning: Kinetic and equilibrium modeling of dyes adsorption
Abstract
The present treatment of water from aqueous solutions, reported from our research work, uses polyurea
(PU) as a novel adsorbent. Specifically, the adsorption efficacy of PU was tested in dyes with different characteristics
(Congo red (CR) and methylene blue (MB)). The PU membrane was obtained by a sol-gel chemistry reaction of polyetheramine with polyisocyanate resulting in the formation of urea groups, confirmed through FTIR analysis. The polymeric membrane exhibited a high homogeneity, making it a viable purifying technology for wastewater. The high
swelling capacity of the membrane played a crucial role in the CR dye diffusion/adsorption. Notably, PU membranes
showed excellent adsorption to CR anionic dye, resulting in a removal efficiency over 85%. However, MB dye adsorption was less favorable, suggesting a high affinity with anionic species. Our analysis revealed that the adsorption of CR
dye onto PU membranes follows the pseudo-second order kinetic and Langmuir isotherm models. Moreover, the intraparticle diffusion model demonstrated that the swelling of PU facilitates the adsorption/diffusion process, thereby
accelerating the mass transfer of the CR dye onto the membrane. Overall, our findings suggest that PU membranes
derived from commercially available reagents are highly promising for the decontamination of dye wastewater.
Keywords
References
2. M. Jose, M. Kumari, R. Karunakaran and S. Shukla, J. Sol-Gel Sci.Technol., 75, 541 (2015).
3. N. Singh, S. Riyajuddin, K. Ghosh, S. K. Mehta and A. Dan, ACS Appl. Nano Mater., 2, 7379 (2019).
4. P. Rajapaksha, R. Orrell-Trigg, Y. B. Truong, D. Cozzolino, V. K.Truong and J. Chapman, Environ. Sci. Adv., 1, 456 (2022).
5. A. Huang, M. Yan, J. Lin, L. Xu, H. Gong and H. Gong, Int. J.Environ. Res. Public Health, 18, 4909 (2021).
6. M.M. Tarekegn, R.M. Balakrishnan, A.M. Hiruy and A.H. Dekebo,RSC Adv., 11, 30109 (2021).
7. J. Shu, Z. Wang, Y. Huang, N. Huang, C. Ren and W. Zhang, J.Alloys Compd., 633, 338 (2015).
8. Y. Y. Chen, S. H. Yu, H. F. Jiang, Q. Z. Yao, S. Q. Fu and G. T. Zhou,Appl. Surf. Sci., 444, 224 (2018).
9. Y. Zheng, B. Cheng, J. Fan, J. Yu and W. Ho, J. Hazard. Mater., 403,123559 (2021).
10. A. Shinko, S.C. Jana and M.A. Meador, RSC Adv., 5, 105329 (2015).
11. A. Sanchez-Ferrer, D. Rogez and P. Martinoty, Macromol. Chem.Phys., 211, 1712 (2010).
12. M.A. de Resende, G.A. Pedroza, L.H.G.M.C. Macêdo, R. Oliveira,M. Amela-Cortes, Y. Molard and E. F. Molina, J. Appl. Polym. Sci.,139, 51970 (2022).
13. G. A. Pedroza, L. H. G. M. C. Macêdo, R. Oliveira, N. N. Silveira,R. P. Orenha, R. L. T. Parreira, R. A. Santos, Y. Molard, M. AmelaCortes and E. F. Molina, J. Drug Deliv. Sci. Technol., 76, 103744 (2022).
14. B. Yu, Y. Luo, H. Cong, C. Gu, W. Wang, C. Tian, J. Zhai and M.Usman, RSC Adv., 6, 111806 (2016).
15. R. Dsouza, D. Sriramulu and S. Valiyaveettil, RSC Adv., 6, 24508 (2016).
16. J. Mattia and P. Painter, Macromolecules, 40, 1546 (2007).
17. A. Sánchez-Ferrer, V. Soprunyuk, M. Engelhardt, R. Stehle, H. A.Gilg, W. Schranz and K. Richter, ACS Appl. Polym. Mater., 3, 4070 (2021).
18. V. Z. Bermudez, L. D. Carlos and L. Alcacer, Chem. Mater., 11, 569 (1999).
19. M. Paredes, S. H. Pulcinelli, C. Peniche, V. Gonçalves and C. V.Santilli, J. Sol-Gel Sci. Technol., 72, 233 (2014).
20. N.A.M. de Jesus, A.H.P. de Oliveira, D.C. Tavares, R.A. Furtado, M. L. A. Silva, W. R. Cunha and E. F. Molina, J. Sol-Gel Sci. Technol., 88, 192 (2018).
21. L. Lian, L. Guo and C. Guo, J. Hazard. Mater., 161, 126 (2009).
22. Y. S. Ho, J. Hazard. Mater., 136, 681 (2006).
23. Y. S. Ho and G. McKay, Water Res., 34, 735 (2000).
24. Y. S. Ho and G. McKay, Process Saf. Environ. Prot., 76, 332 (1998).
25. T. Cai, H. Chen, L. Yao and H. Peng, Int. J. Mol. Sci., 24, 684 (2023).
26. W. J. J. Weber, Kinetics of adsorption of carbon from solution. In:J. C. Morris (Hrsg.). Journal of the Sanitary Engineering Division,American Society of Civil Engineers. Sanitary Engineering Division 31-59 (1963).
27. L. K. de Oliveira, A. L. A. Moura, V. Barbosa, R. L. T. Parreira, R. S.Banegas, G. F. Caramori, K. J. Ciuffi and E. F. Molina, Environ. Sci.
Pollut. Res., 24, 18421 (2017).
28. A. L. A. Moura, L. K. de Oliveira, K. J. Ciuffi and E. F. Molina, J.Mater. Chem. A, 3, 16020 (2015).
29. I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918).
30. H. M. F. Freundlich, J. Phys. Chem., 57, 385 (1906).
31. S. Tang, D. Xia, Y. Yao, T. Chen, J. Sun, Y. Yin, W. Shen and Y.Peng, J. Colloid Interface Sci., 554, 682 (2019).
32. T. Feng, F. Zhang, J. Wang and L. Wang, J. Appl. Polym. Sci., 125,1766 (2012).
33. M. Harja, G. Buema and D. Bucur, Sci. Rep., 12, 6087 (2022).
34. R. S. Farias, H. L. B. Buarque, M. R. Cruz, L. M. F. Cardoso, T. A.Gondim and V. R. Paulo, Eng. Sanit. E Ambient., 23, 1053 (2018).
35. A. Dbik, S. Bentahar, M. E. Khomri, N. E. Messaoudi and A. Lacherai, Mater. Today: Proc., 22, 134 (2020).
36. B. Meroufel, O. Benali, M. Benyahia, Y. Benmoussa and M. A.Zenasni, J. Mater. Environ. Sci., 4, 482 (2013).
37. A. Extross, A. Waknis, C. Tagad, V. V. Gedam and P. D. Pathak,Int. J. Environ. Sci. Technol., 20, 1607 (2023).
38. A. B. F. Câmara, R. V. Sales, C. V. S. Júnior, M. A. F. de Souza, C.Longe, T. M. Chianca, R. D. Possa, R. C. Bertolino and L. S. Carvalho, Korean J. Chem. Eng., 39, 1805 (2022).
39. P. Marín San Román and R. P. Sijbesma, Adv. Mater. Interfaces, 9,2200341 (2022).
40. P. Marin San Roman, K. Nijmeijer and R. P. Sijbesma, J. Membr.Sci., 644, 120097 (2022).