ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 5, 2023
Revised June 20, 2023
Accepted July 12, 2023
Acknowledgements
We are grateful to Huntsman Performance Products and Bayer Group for their generous donation of Jeffamine® and triisocyanate crosslinker reagents, respectively. This research was funded by FAPESP grant no 2021/06552-1, CAPES - Finance Code 001, and CNPq no 307696/2021-9.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Polyurea membrane for water cleaning: Kinetic and equilibrium modeling of dyes adsorption

1Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600 Franca-SP, Brazil 2Universidad Pública de Navarra, Av. Cataluña, 31006 Pamplona, Navarra, España 3Instituto Federal de São Paulo, Campus Barretos, Avenida C-1, 250, 14781-502 Barretos-SP, Brazil
eduardo.molina@unifran.edu.br
Korean Journal of Chemical Engineering, December 2023, 40(12), 2982-2989(8), 10.1007/s11814-023-1532-x
downloadDownload PDF

Abstract

The present treatment of water from aqueous solutions, reported from our research work, uses polyurea (PU) as a novel adsorbent. Specifically, the adsorption efficacy of PU was tested in dyes with different characteristics (Congo red (CR) and methylene blue (MB)). The PU membrane was obtained by a sol-gel chemistry reaction of polyetheramine with polyisocyanate resulting in the formation of urea groups, confirmed through FTIR analysis. The polymeric membrane exhibited a high homogeneity, making it a viable purifying technology for wastewater. The high swelling capacity of the membrane played a crucial role in the CR dye diffusion/adsorption. Notably, PU membranes showed excellent adsorption to CR anionic dye, resulting in a removal efficiency over 85%. However, MB dye adsorption was less favorable, suggesting a high affinity with anionic species. Our analysis revealed that the adsorption of CR dye onto PU membranes follows the pseudo-second order kinetic and Langmuir isotherm models. Moreover, the intraparticle diffusion model demonstrated that the swelling of PU facilitates the adsorption/diffusion process, thereby accelerating the mass transfer of the CR dye onto the membrane. Overall, our findings suggest that PU membranes derived from commercially available reagents are highly promising for the decontamination of dye wastewater.

References

1. R. Jana, A. Gupta, R. Choudhary and O. P. Pandey, J. Sol-Gel Sci.Technol., 96, 405 (2020).
2. M. Jose, M. Kumari, R. Karunakaran and S. Shukla, J. Sol-Gel Sci.Technol., 75, 541 (2015).
3. N. Singh, S. Riyajuddin, K. Ghosh, S. K. Mehta and A. Dan, ACS Appl. Nano Mater., 2, 7379 (2019).
4. P. Rajapaksha, R. Orrell-Trigg, Y. B. Truong, D. Cozzolino, V. K.Truong and J. Chapman, Environ. Sci. Adv., 1, 456 (2022).
5. A. Huang, M. Yan, J. Lin, L. Xu, H. Gong and H. Gong, Int. J.Environ. Res. Public Health, 18, 4909 (2021).
6. M.M. Tarekegn, R.M. Balakrishnan, A.M. Hiruy and A.H. Dekebo,RSC Adv., 11, 30109 (2021).
7. J. Shu, Z. Wang, Y. Huang, N. Huang, C. Ren and W. Zhang, J.Alloys Compd., 633, 338 (2015).
8. Y. Y. Chen, S. H. Yu, H. F. Jiang, Q. Z. Yao, S. Q. Fu and G. T. Zhou,Appl. Surf. Sci., 444, 224 (2018).
9. Y. Zheng, B. Cheng, J. Fan, J. Yu and W. Ho, J. Hazard. Mater., 403,123559 (2021).
10. A. Shinko, S.C. Jana and M.A. Meador, RSC Adv., 5, 105329 (2015).
11. A. Sanchez-Ferrer, D. Rogez and P. Martinoty, Macromol. Chem.Phys., 211, 1712 (2010).
12. M.A. de Resende, G.A. Pedroza, L.H.G.M.C. Macêdo, R. Oliveira,M. Amela-Cortes, Y. Molard and E. F. Molina, J. Appl. Polym. Sci.,139, 51970 (2022).
13. G. A. Pedroza, L. H. G. M. C. Macêdo, R. Oliveira, N. N. Silveira,R. P. Orenha, R. L. T. Parreira, R. A. Santos, Y. Molard, M. AmelaCortes and E. F. Molina, J. Drug Deliv. Sci. Technol., 76, 103744 (2022).
14. B. Yu, Y. Luo, H. Cong, C. Gu, W. Wang, C. Tian, J. Zhai and M.Usman, RSC Adv., 6, 111806 (2016).
15. R. Dsouza, D. Sriramulu and S. Valiyaveettil, RSC Adv., 6, 24508 (2016).
16. J. Mattia and P. Painter, Macromolecules, 40, 1546 (2007).
17. A. Sánchez-Ferrer, V. Soprunyuk, M. Engelhardt, R. Stehle, H. A.Gilg, W. Schranz and K. Richter, ACS Appl. Polym. Mater., 3, 4070 (2021).
18. V. Z. Bermudez, L. D. Carlos and L. Alcacer, Chem. Mater., 11, 569 (1999).
19. M. Paredes, S. H. Pulcinelli, C. Peniche, V. Gonçalves and C. V.Santilli, J. Sol-Gel Sci. Technol., 72, 233 (2014).
20. N.A.M. de Jesus, A.H.P. de Oliveira, D.C. Tavares, R.A. Furtado, M. L. A. Silva, W. R. Cunha and E. F. Molina, J. Sol-Gel Sci. Technol., 88, 192 (2018).
21. L. Lian, L. Guo and C. Guo, J. Hazard. Mater., 161, 126 (2009).
22. Y. S. Ho, J. Hazard. Mater., 136, 681 (2006).
23. Y. S. Ho and G. McKay, Water Res., 34, 735 (2000).
24. Y. S. Ho and G. McKay, Process Saf. Environ. Prot., 76, 332 (1998).
25. T. Cai, H. Chen, L. Yao and H. Peng, Int. J. Mol. Sci., 24, 684 (2023).
26. W. J. J. Weber, Kinetics of adsorption of carbon from solution. In:J. C. Morris (Hrsg.). Journal of the Sanitary Engineering Division,American Society of Civil Engineers. Sanitary Engineering Division 31-59 (1963).
27. L. K. de Oliveira, A. L. A. Moura, V. Barbosa, R. L. T. Parreira, R. S.Banegas, G. F. Caramori, K. J. Ciuffi and E. F. Molina, Environ. Sci.
Pollut. Res., 24, 18421 (2017).
28. A. L. A. Moura, L. K. de Oliveira, K. J. Ciuffi and E. F. Molina, J.Mater. Chem. A, 3, 16020 (2015).
29. I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918).
30. H. M. F. Freundlich, J. Phys. Chem., 57, 385 (1906).
31. S. Tang, D. Xia, Y. Yao, T. Chen, J. Sun, Y. Yin, W. Shen and Y.Peng, J. Colloid Interface Sci., 554, 682 (2019).
32. T. Feng, F. Zhang, J. Wang and L. Wang, J. Appl. Polym. Sci., 125,1766 (2012).
33. M. Harja, G. Buema and D. Bucur, Sci. Rep., 12, 6087 (2022).
34. R. S. Farias, H. L. B. Buarque, M. R. Cruz, L. M. F. Cardoso, T. A.Gondim and V. R. Paulo, Eng. Sanit. E Ambient., 23, 1053 (2018).
35. A. Dbik, S. Bentahar, M. E. Khomri, N. E. Messaoudi and A. Lacherai, Mater. Today: Proc., 22, 134 (2020).
36. B. Meroufel, O. Benali, M. Benyahia, Y. Benmoussa and M. A.Zenasni, J. Mater. Environ. Sci., 4, 482 (2013).
37. A. Extross, A. Waknis, C. Tagad, V. V. Gedam and P. D. Pathak,Int. J. Environ. Sci. Technol., 20, 1607 (2023).
38. A. B. F. Câmara, R. V. Sales, C. V. S. Júnior, M. A. F. de Souza, C.Longe, T. M. Chianca, R. D. Possa, R. C. Bertolino and L. S. Carvalho, Korean J. Chem. Eng., 39, 1805 (2022).
39. P. Marín San Román and R. P. Sijbesma, Adv. Mater. Interfaces, 9,2200341 (2022).
40. P. Marin San Roman, K. Nijmeijer and R. P. Sijbesma, J. Membr.Sci., 644, 120097 (2022).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로