ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 2, 2023
Revised June 28, 2023
Accepted July 18, 2023
Acknowledgements
This research was supported by the National Research Foundation (NRF) of Korea funded by the Ministry of Science and ICT (No. 2023R1A2C1006555). This result was also supported by “Regional Innovation Strategy (RIS)” through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-003). This work was also supported by the Graduate School of Post Plastic Specialization of Korea Environmental Industry & Technology Institute grant funded by the Ministry of Environment,
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

MgO-based composites for high pressure CO2 capture: A first-principles theoretical and experimental investigation

1School of Chemical Engineering, Pusan National University, Busan 46241, Korea 2Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea 3Center for Creative Convergence Education, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea 4Clean Energy Research Institute, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea 5Academy of Scientific and Innovative Research and Adsorption and Membrane Separation Laboratory, Council of Scientific and Industrial Research, Indian Institute of Petroleum Campus (CSIR-IIP), Dehradun 248005, India 6School of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Korea 7Department of Organic Material Science and Engineering, Pusan National University, Busan 46241, Korea
sgkang@ulsan.ac.kr, jgseo@hanyang.ac.kr, seunggeol.lee@pusan.ac.kr
Korean Journal of Chemical Engineering, December 2023, 40(12), 2990-2996(7), 10.1007/s11814-023-1536-6
downloadDownload PDF

Abstract

Magnesium oxide (MgO) is an interesting material with tunable acido-basic properties. MgO-based composite sorbents (MgAl2O4, MgSiO3, and MgTiO3) have drawn much attention based on their high temperature CO2 sorption. In this study, a theoretical and experimental investigation by phonon calculations and high-pressure CO2 sorption was conducted to identify a potential candidate to achieve CO2 capture under pre-combustion conditions. The divergence of the physico-chemical properties of the various sample materials was found to be the determining factor for the enhanced CO2 sorption. From the high-pressure CO2 sorption experiment at 200 o C, MgAl2O4 shows high chemisorption capacity of CO2 compared to the other systems such as MgO, MgSiO3 and MgTiO3. However, the thermodynamic properties of MgAl2O4 for CO2 capture were found to be less favorable than those of other compounds in our phonon calculations. Thus, the carbonation of MgAl2O4, producing MgCO3 is not a favorable reaction at the experimental condition in our phonon calculations due to the formation of Al2O3 as a byproduct. On the other hand, MgO was experimentally found to have low adsorption capacity under similar conditions. Contrarily, the carbonation of MgO, which has a large number of basic sites at pre-combustion conditions and produces MgCO3, is found to be favorable in our calculations clearly defining the existence of tradeoff properties under practical CO2 sorption conditions.

References

1. M. McCrink-Goode, Environ. Int., 68, 162 (2014).
2. S. Choi, J. H. Drese and C. W. Jones, Chemsuschem, 2, 796 (2009).
3. G. T. Rochelle, Science, 325, 1652 (2009).
4. A. Samanta, A. Zhao, G. K. H. Shimizu, P. Sarkar and R. Gupta, Ind.Eng. Chem. Res., 51, 1438 (2012).
5. S. J. Han, Y. Bang, H. J. Kwon, H. C. Lee, V. Hiremath, I. K. Song and J. G. Seo, Chem. Eng. J., 242, 357 (2014).
6. V. Hiremath, R. Shavi and J. G. Seo, J. Colloid Interface Sci., 498, 55 (2017).
7. V. Hiremath, R. Shavi and J. G. Seo, Chem. Eng. J., 308, 177 (2017).
8. S. Kumar and S. K. J. Saxena, Mater. Renew. Sust. Energy, 3, 30 (2014).
9. H. J. Kwon, S. Kwon, J. G. Seo, I. S. Jung, Y.-H. Son, C. H. Lee, K. B. Lee and H. C. Lee, ChemSusChem, 10, 1701 (2017).
10. Y. H. Duan and D. C. Sorescu, J. Chem. Phys., 133, 074508 (2010).
11. Y. H. Duan and D. C. Sorescu, Phys. Rev. B, 79, 014301 (2009).
12. Y. H. Duan, B. Zhang, D. C. Sorescu and J. K. Johnson, J. Solid State Chem., 184, 304 (2011).
13. Y. Duan, J. Lekse, X. Wang, B. Li, B. Alcántar-Vázquez, H. Pfeiffer and J. W. Halley, Phys. Rev. Appl., 3, 044013 (2015).
14. E. Vera, B. Alcantar-Vazquez, Y. H. Duan and H. Pfeiffer, Rsc Adv., 6, 2162 (2016).
15. G. Kresse and J. Furthmuller, Phys. Rev. B, 54, 11169 (1996).
16. G. Kresse and J. Furthmuller, Comp. Mater. Sci., 6, 15 (1996).
17. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias and J.D. Joannopoulos, Rev. Mod. Phys., 64, 1045 (1992).
18. J. P. Perdew and Y. Wang, Phys. Rev. B, 45, 13244 (1992).
19. K. Burke, J. P. Perdew and Y. Wang, in Electronic density functional theory: Recent progress and new directions, eds John F. Dobson, Giovanni Vignale, & Mukunda P. Das, 81-111, Springer US (1998).
20. J. P. Perdew, J. Electron. Struct. Solids, 91, 11 (1991).
21. Y. Duan, K. Zhang, X. S. Li, D. L. King, B. Li, L. Zhao and Y. Xiao, Aerosol Air Qual. Res., 14, 470 (2014).
22. K. Parlinski, Software PHONON (2006).
23. H. J. Monkhorst and J. D. Pack, Phys. Rev. B, 13, 5188 (1976).
24. R. Mortimer, Physical chemistry 3rd ed., Elsevier (2008).
25. M. J. Frisch, H. F. Schaefer and J. S. Binkley, J. Phys. Chem., 89, 2192 (1985).
26. M. W. Chase Jr., J. Phys. Chem. Ref. Data, Monograph, 9, 1 (1998).
27. O. J. Oy, HSC Chemistry 6.1 (2008).
28. R. M. Hazen, Am. Mineralogist, 61, 266 (1976).
29. E. N. Maslen, V. A. Streltsov and N. R. Streltsova, Acta Cryst. B, 49, 980 (1993).
30. S. A. T. Redfern, R. J. Harrison, H. S. C. O'Neill and D. R. R. Wood, Am. Mineralogist, 84, 299 (1999).
31. N. Ishizawa, T. Miyata, I. Minato, F. Marumo, and S. A. Iwai, Acta Cryst. B, 36, 228 (1980).
32. K. Kihara, Eur. J. Miner., 2, 63 (1990).
33. T. Yamanaka, Y. Komatsu, M. Sugahara and T. Nagai, Am. Mineralogist, 90, 1301 (2005).
34. M. Horn and C. F. Schwebdtfeger and E. P. Meagher, Zeitschrift für Kristallographie - Cryst. Mater., 136, 273 (1972).
35. S. Sasaki, K. Fujino, Y. Takeuchi and R. Sadanaga, Acta Cryst. A,36, 904 (1980).
36. M. E. Boot-Handford, J. C. Abanades, E. J. Anthony, M. J. Blunt, S.Brandani, N. M. Dowell, J. R. Fernández, M.-C. Ferrari, R. Gross,J. P. Hallett, R. S. Haszeldine, P. Heptonstall, A. Lyngfelt, Z. Makuch,E. Mangano, R. T. J. Porter, M. Pourkashanian, G. T. Rochelle, N.Shah, J. G. Yao and P. S. Fennell, Energ. Environ. Sci., 7, 130 (2014).
37. J.A. Mason, K. Sumida, Z.R. Herm, R. Krishna and J.R. Long, Energ.Environ. Sci., 4, 3030 (2011)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로