Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 2, 2023
Revised June 28, 2023
Accepted July 18, 2023
- Acknowledgements
- This research was supported by the National Research Foundation (NRF) of Korea funded by the Ministry of Science and ICT (No. 2023R1A2C1006555). This result was also supported by “Regional Innovation Strategy (RIS)” through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-003). This work was also supported by the Graduate School of Post Plastic Specialization of Korea Environmental Industry & Technology Institute grant funded by the Ministry of Environment,
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
MgO-based composites for high pressure CO2 capture: A first-principles theoretical and experimental investigation
Abstract
Magnesium oxide (MgO) is an interesting material with tunable acido-basic properties. MgO-based composite sorbents (MgAl2O4, MgSiO3, and MgTiO3) have drawn much attention based on their high temperature CO2
sorption. In this study, a theoretical and experimental investigation by phonon calculations and high-pressure CO2
sorption was conducted to identify a potential candidate to achieve CO2 capture under pre-combustion conditions. The
divergence of the physico-chemical properties of the various sample materials was found to be the determining factor
for the enhanced CO2 sorption. From the high-pressure CO2 sorption experiment at 200 o
C, MgAl2O4 shows high
chemisorption capacity of CO2 compared to the other systems such as MgO, MgSiO3 and MgTiO3. However, the thermodynamic properties of MgAl2O4 for CO2 capture were found to be less favorable than those of other compounds in
our phonon calculations. Thus, the carbonation of MgAl2O4, producing MgCO3 is not a favorable reaction at the
experimental condition in our phonon calculations due to the formation of Al2O3 as a byproduct. On the other hand,
MgO was experimentally found to have low adsorption capacity under similar conditions. Contrarily, the carbonation
of MgO, which has a large number of basic sites at pre-combustion conditions and produces MgCO3, is found to be
favorable in our calculations clearly defining the existence of tradeoff properties under practical CO2 sorption conditions.
References
2. S. Choi, J. H. Drese and C. W. Jones, Chemsuschem, 2, 796 (2009).
3. G. T. Rochelle, Science, 325, 1652 (2009).
4. A. Samanta, A. Zhao, G. K. H. Shimizu, P. Sarkar and R. Gupta, Ind.Eng. Chem. Res., 51, 1438 (2012).
5. S. J. Han, Y. Bang, H. J. Kwon, H. C. Lee, V. Hiremath, I. K. Song and J. G. Seo, Chem. Eng. J., 242, 357 (2014).
6. V. Hiremath, R. Shavi and J. G. Seo, J. Colloid Interface Sci., 498, 55 (2017).
7. V. Hiremath, R. Shavi and J. G. Seo, Chem. Eng. J., 308, 177 (2017).
8. S. Kumar and S. K. J. Saxena, Mater. Renew. Sust. Energy, 3, 30 (2014).
9. H. J. Kwon, S. Kwon, J. G. Seo, I. S. Jung, Y.-H. Son, C. H. Lee, K. B. Lee and H. C. Lee, ChemSusChem, 10, 1701 (2017).
10. Y. H. Duan and D. C. Sorescu, J. Chem. Phys., 133, 074508 (2010).
11. Y. H. Duan and D. C. Sorescu, Phys. Rev. B, 79, 014301 (2009).
12. Y. H. Duan, B. Zhang, D. C. Sorescu and J. K. Johnson, J. Solid State Chem., 184, 304 (2011).
13. Y. Duan, J. Lekse, X. Wang, B. Li, B. Alcántar-Vázquez, H. Pfeiffer and J. W. Halley, Phys. Rev. Appl., 3, 044013 (2015).
14. E. Vera, B. Alcantar-Vazquez, Y. H. Duan and H. Pfeiffer, Rsc Adv., 6, 2162 (2016).
15. G. Kresse and J. Furthmuller, Phys. Rev. B, 54, 11169 (1996).
16. G. Kresse and J. Furthmuller, Comp. Mater. Sci., 6, 15 (1996).
17. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias and J.D. Joannopoulos, Rev. Mod. Phys., 64, 1045 (1992).
18. J. P. Perdew and Y. Wang, Phys. Rev. B, 45, 13244 (1992).
19. K. Burke, J. P. Perdew and Y. Wang, in Electronic density functional theory: Recent progress and new directions, eds John F. Dobson, Giovanni Vignale, & Mukunda P. Das, 81-111, Springer US (1998).
20. J. P. Perdew, J. Electron. Struct. Solids, 91, 11 (1991).
21. Y. Duan, K. Zhang, X. S. Li, D. L. King, B. Li, L. Zhao and Y. Xiao, Aerosol Air Qual. Res., 14, 470 (2014).
22. K. Parlinski, Software PHONON (2006).
23. H. J. Monkhorst and J. D. Pack, Phys. Rev. B, 13, 5188 (1976).
24. R. Mortimer, Physical chemistry 3rd ed., Elsevier (2008).
25. M. J. Frisch, H. F. Schaefer and J. S. Binkley, J. Phys. Chem., 89, 2192 (1985).
26. M. W. Chase Jr., J. Phys. Chem. Ref. Data, Monograph, 9, 1 (1998).
27. O. J. Oy, HSC Chemistry 6.1 (2008).
28. R. M. Hazen, Am. Mineralogist, 61, 266 (1976).
29. E. N. Maslen, V. A. Streltsov and N. R. Streltsova, Acta Cryst. B, 49, 980 (1993).
30. S. A. T. Redfern, R. J. Harrison, H. S. C. O'Neill and D. R. R. Wood, Am. Mineralogist, 84, 299 (1999).
31. N. Ishizawa, T. Miyata, I. Minato, F. Marumo, and S. A. Iwai, Acta Cryst. B, 36, 228 (1980).
32. K. Kihara, Eur. J. Miner., 2, 63 (1990).
33. T. Yamanaka, Y. Komatsu, M. Sugahara and T. Nagai, Am. Mineralogist, 90, 1301 (2005).
34. M. Horn and C. F. Schwebdtfeger and E. P. Meagher, Zeitschrift für Kristallographie - Cryst. Mater., 136, 273 (1972).
35. S. Sasaki, K. Fujino, Y. Takeuchi and R. Sadanaga, Acta Cryst. A,36, 904 (1980).
36. M. E. Boot-Handford, J. C. Abanades, E. J. Anthony, M. J. Blunt, S.Brandani, N. M. Dowell, J. R. Fernández, M.-C. Ferrari, R. Gross,J. P. Hallett, R. S. Haszeldine, P. Heptonstall, A. Lyngfelt, Z. Makuch,E. Mangano, R. T. J. Porter, M. Pourkashanian, G. T. Rochelle, N.Shah, J. G. Yao and P. S. Fennell, Energ. Environ. Sci., 7, 130 (2014).
37. J.A. Mason, K. Sumida, Z.R. Herm, R. Krishna and J.R. Long, Energ.Environ. Sci., 4, 3030 (2011)