Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 25, 2021
Revised November 7, 2021
Accepted November 11, 2021
- Acknowledgements
- The study was supported by The Youth Incubator for Science and Technology Program, managed by Youth Development Science and Technology Center-Ho Chi Minh Communist Youth Union and Department of Science and Technology of Ho Chi Minh City, the contract number is “37/2020/HĐ-KHCNT-VƯ” (30/12/ 2020).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Nano-sized hematite-assembled carbon spheres for effectively adsorbing paracetamol in water: Important role of iron
Abstract
This study developed a new -Fe2O3 (hematite) nanoparticles-loaded spherical biochar (H-SB) through the
direct pyrolysis of glucose-derived spherical hydrochar and FeCl3. The optimal impregnation ratio (hydrochar and
FeCl3) was 1/1.25 (wt/wt). H-SB was applied to remove paracetamol (PRC) from water. Results indicated that H-SB
exhibited a relatively low surface area (127 m2
/g) and total pore volume (0.089 cm3
/g). The presence of iron particles in
its surface was confirmed by scanning electron microscopy with energy dispersive spectroscopy. The dominant form of
iron nanoparticles (-Fe2O3) in its surface was confirmed by X-ray powder diffraction and Raman spectrum. The crystallite size of -Fe2O3 in H-SB was 27.4 nm. The saturation magnetization of H-SB was 6.729 emu/g. The analysis of
Fourier-transform infrared spectroscopy demonstrated that the C-O and O-H groups were mainly responsible for loading -Fe2O3 nanoparticles in its surface. The adsorption study indicated the amount of PRC adsorbed by H-SB slightly
decreased within solution pH from 2 to 11. The adsorption reached a fast saturation after 120 min. The Langmuir
maximum adsorption capacity of H-SB was 49.9 mg/g at 25 o
C and pH 7.0. Ion-dipole interaction and - interaction
played an important role in adsorption mechanisms, while hydrogen bonding and pore filling were minor. Therefore,
H-SB can serve as a promising material for treating PRC-contaminated water streams.
References
2. S. M. Abdelbasir and A. E. Shalan, Korean J. Chem. Eng., 36, 1209 (2019).
3. I. Ihsanullah, Chem. Eng. J., 388, 124340 (2020).
4. P. Zhang, D. O’Connor, Y. Wang, L. Jiang, T. Xia, L. Wang, D. C. W.Tsang, Y. S. Ok and D. Hou, J. Hazard. Mater., 384, 121286 (2020).
5. M. Jain, M. Yadav, T. Kohout, M. Lahtinen, V. K. Garg and M. Sillanpää, Water Resour. Ind., 20, 54 (2018).
6. J. Kaur, M. Kaur, M. K. Ubhi, N. Kaur and J.-M. Greneche, Mater.Chem. Phys., 258, 124002 (2021).
7. H. N. Tran, F. Tomul, H. T. H. Nguyen, D. T. Nguyen, E. C. Lima,G. T. Le, C.-T. Chang, V. Masindi and S. H. Woo, J. Hazard. Mater.,394, 122255 (2020).
8. L. Yu, C. Falco, J. Weber, R. J. White, J. Y. Howe and M.-M. Titirici,Langmuir, 28, 12373 (2012).
9. H. N. Tran, C.-K. Lee, T. V. Nguyen and H.-P. Chao, Environ. Technol., 39, 2747 (2018).
10. M. Sevilla and A. B. Fuertes, Chem. Eur. J., 15, 4195 (2009).
11. F.-C. Huang, C.-K. Lee, Y.-L. Han, W.-C. Chao and H.-P. Chao, J.Taiwan. Inst. Chem. Eng., 45, 2805 (2014).
12. A. Solanki and T. H. Boyer, Chemosphere, 218, 818 (2019).
13. F. Tomul, Y. Arslan, B. Kabak, D. Trak and H. N. Tran, J. Chem.Technol. Biotechnol., 96, 869 (2021).
14. V. O. Leone, M. C. Pereira, S. F. Aquino, L. C. A. Oliveira, S. Correa,T. C. Ramalho, L. V. A. Gurgel and A. C. Silva, New J. Chem., 42,437 (2018).
15. D. T. Nguyen, H. N. Tran, R.-S. Juang, N. D. Dat, F. Tomul, A.Ivanets, S. H. Woo, A. Hosseini-Bandegharaei, V. P. Nguyen and H.-P. Chao, J. Environ. Chem. Eng., 8, 104408 (2020).
16. A. L. Bursztyn Fuentes, R. L. S. Canevesi, P. Gadonneix, S. Mathieu,A. Celzard and V. Fierro, Ind. Crops Prod., 155, 112740 (2020).
17. S. Wong, Y. Lim, N. Ngadi, R. Mat, O. Hassan, I. M. Inuwa, N. B.Mohamed and J. H. Low, Powder Technol., 338, 878 (2018).
18. L. Spessato, K. C. Bedin, A. L. Cazetta, I. P. A. F. Souza, V. A. Duarte,L. H. S. Crespo, M. C. Silva, R. M. Pontes and V. C. Almeida, J.Hazard. Mater., 371, 499 (2019).
19. R.a. Markets, https://www.researchandmarkets.com/reports/4997604/paracetamol-market-growth-trends-covid-19 (2021).
20. S. Pandolfi, V. Simonetti, G. Ricevuti and S. Chirumbolo, J. Med.Virol., 93, 5704 (2021).
21. R. Cairns and J. A. Brown, Med. J. Aust., 211, 218 (2019).
22. W. J. Lee, P. S. Goh, W. J. Lau and A. F. Ismail, Arab. J. Sci. Eng., 45,7109 (2020).
23. S. Y. Bunting, D. J. Lapworth, E. J. Crane, J. Grima-Olmedo, A.Koroša, A. Kuczyńska, N. Mali, L. Rosenqvist, M. E. van Vliet, A.Togola and B. Lopez, Environ. Pollut., 269, 115945 (2021).
24. B. Nunes, Non-steroidal anti-inflammatory drugs in water: emerging contaminants and ecological impact, Springer International Publishing, Cham (2020).
25. D. Spreitzer and J. Schenk, Steel Res. Int., 90, 1900108 (2019).
26. D. Cao, H. Li, L. Pan, J. Li, X. Wang, P. Jing, X. Cheng, W. Wang, J.Wang and Q. Liu, Sci. Rep., 6, 32360 (2016).
27. S. B. Kanungo and S. K. Mishra, J. Therm. Anal., 46, 1487 (1996).
28. L.-L. Sui, L.-N. Peng and H.-B. Xu, Korean J. Chem. Eng., 38, 498 (2021).
29. M. I. Dar and S. A. Shivashankar, RSC Adv., 4, 4105 (2014).
30. B. Ahmmad, K. Leonard, M. Shariful Islam, J. Kurawaki, M.Muruganandham, T. Ohkubo and Y. Kuroda, Adv. Powder Technol., 24, 160 (2013).
31. D. E. Fouad, C. Zhang, H. El-Didamony, L. Yingnan, T. D. Mekuria and A. H. Shah, Results Phys., 12, 1253 (2019).
32. P. J. Sephra, P. Baraneedharan, M. Sivakumar, T. D. Thangadurai and K. Nehru, J. Mater. Sci.: Mater. Electron., 29, 6898 (2018).
33. M. Tadic, D. Trpkov, L. Kopanja, S. Vojnovic and M. Panjan, J.Alloys Compd., 792, 599 (2019).
34. G. Ohemeng-Boahen, D. D. Sewu, H. N. Tran and S. H. Woo, Colloids Surf. A, 625, 126911 (2021).
35. S. Dashamiri, M. Ghaedi, K. Dashtian, M. R. Rahimi, A. Goudarzi and R. Jannesar, Ultrason. Sonochem., 31, 546 (2016).
36. K. E. Waters, N. A. Rowson, R. W. Greenwood and A. J. Williams,Sep. Purif. Technol., 56, 9 (2007).
37. V. Ranjithkumar, S. Sangeetha and S. Vairam, J. Hazard. Mater.,273, 127 (2014).
38. V. Bernal, L. Giraldo and J. C. Moreno-Piraján, Thermochim. Acta,683, 178467 (2020).
39. D. Nematollahi, H. Shayani-Jam, M. Alimoradi and S. Niroomand,Electrochim. Acta, 54, 7407 (2009).
40. M. Galhetas, M. A. Andrade, A. S. Mestre, E. Kangni-foli, M. J. Villa de Brito, M. L. Pinto, H. Lopes and A. P. Carvalho, Phys. Chem.Chem. Phys., 17, 12340 (2015).
41. I. C. Afolabi, S. I. Popoola and O. S. Bello, Spectrochim. Acta A,243, 118769 (2020).