ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 25, 2021
Revised November 7, 2021
Accepted November 11, 2021
Acknowledgements
The study was supported by The Youth Incubator for Science and Technology Program, managed by Youth Development Science and Technology Center-Ho Chi Minh Communist Youth Union and Department of Science and Technology of Ho Chi Minh City, the contract number is “37/2020/HĐ-KHCNT-VƯ” (30/12/ 2020).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Nano-sized hematite-assembled carbon spheres for effectively adsorbing paracetamol in water: Important role of iron

1Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Vietnam 2Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Vietnam 3Faculty of Chemical & Food Technology, Ho Chi Minh City University of Technology and Education, Thu Duc, Ho Chi Minh City, 700000, Vietnam
trannguyenhai@duytan.edu.vn, trannguyenhai2512@gmail.com
Korean Journal of Chemical Engineering, December 2023, 40(12), 3029-3038(10), 10.1007/s11814-021-1013-z
downloadDownload PDF

Abstract

This study developed a new -Fe2O3 (hematite) nanoparticles-loaded spherical biochar (H-SB) through the direct pyrolysis of glucose-derived spherical hydrochar and FeCl3. The optimal impregnation ratio (hydrochar and FeCl3) was 1/1.25 (wt/wt). H-SB was applied to remove paracetamol (PRC) from water. Results indicated that H-SB exhibited a relatively low surface area (127 m2 /g) and total pore volume (0.089 cm3 /g). The presence of iron particles in its surface was confirmed by scanning electron microscopy with energy dispersive spectroscopy. The dominant form of iron nanoparticles (-Fe2O3) in its surface was confirmed by X-ray powder diffraction and Raman spectrum. The crystallite size of -Fe2O3 in H-SB was 27.4 nm. The saturation magnetization of H-SB was 6.729 emu/g. The analysis of Fourier-transform infrared spectroscopy demonstrated that the C-O and O-H groups were mainly responsible for loading -Fe2O3 nanoparticles in its surface. The adsorption study indicated the amount of PRC adsorbed by H-SB slightly decreased within solution pH from 2 to 11. The adsorption reached a fast saturation after 120 min. The Langmuir maximum adsorption capacity of H-SB was 49.9 mg/g at 25 o C and pH 7.0. Ion-dipole interaction and - interaction played an important role in adsorption mechanisms, while hydrogen bonding and pore filling were minor. Therefore, H-SB can serve as a promising material for treating PRC-contaminated water streams.

References

1. R. Bhateria and R. Singh, J. Water Process. Eng., 31, 100845 (2019).
2. S. M. Abdelbasir and A. E. Shalan, Korean J. Chem. Eng., 36, 1209 (2019).
3. I. Ihsanullah, Chem. Eng. J., 388, 124340 (2020).
4. P. Zhang, D. O’Connor, Y. Wang, L. Jiang, T. Xia, L. Wang, D. C. W.Tsang, Y. S. Ok and D. Hou, J. Hazard. Mater., 384, 121286 (2020).
5. M. Jain, M. Yadav, T. Kohout, M. Lahtinen, V. K. Garg and M. Sillanpää, Water Resour. Ind., 20, 54 (2018).
6. J. Kaur, M. Kaur, M. K. Ubhi, N. Kaur and J.-M. Greneche, Mater.Chem. Phys., 258, 124002 (2021).
7. H. N. Tran, F. Tomul, H. T. H. Nguyen, D. T. Nguyen, E. C. Lima,G. T. Le, C.-T. Chang, V. Masindi and S. H. Woo, J. Hazard. Mater.,394, 122255 (2020).
8. L. Yu, C. Falco, J. Weber, R. J. White, J. Y. Howe and M.-M. Titirici,Langmuir, 28, 12373 (2012).
9. H. N. Tran, C.-K. Lee, T. V. Nguyen and H.-P. Chao, Environ. Technol., 39, 2747 (2018).
10. M. Sevilla and A. B. Fuertes, Chem. Eur. J., 15, 4195 (2009).
11. F.-C. Huang, C.-K. Lee, Y.-L. Han, W.-C. Chao and H.-P. Chao, J.Taiwan. Inst. Chem. Eng., 45, 2805 (2014).
12. A. Solanki and T. H. Boyer, Chemosphere, 218, 818 (2019).
13. F. Tomul, Y. Arslan, B. Kabak, D. Trak and H. N. Tran, J. Chem.Technol. Biotechnol., 96, 869 (2021).
14. V. O. Leone, M. C. Pereira, S. F. Aquino, L. C. A. Oliveira, S. Correa,T. C. Ramalho, L. V. A. Gurgel and A. C. Silva, New J. Chem., 42,437 (2018).
15. D. T. Nguyen, H. N. Tran, R.-S. Juang, N. D. Dat, F. Tomul, A.Ivanets, S. H. Woo, A. Hosseini-Bandegharaei, V. P. Nguyen and H.-P. Chao, J. Environ. Chem. Eng., 8, 104408 (2020).
16. A. L. Bursztyn Fuentes, R. L. S. Canevesi, P. Gadonneix, S. Mathieu,A. Celzard and V. Fierro, Ind. Crops Prod., 155, 112740 (2020).
17. S. Wong, Y. Lim, N. Ngadi, R. Mat, O. Hassan, I. M. Inuwa, N. B.Mohamed and J. H. Low, Powder Technol., 338, 878 (2018).
18. L. Spessato, K. C. Bedin, A. L. Cazetta, I. P. A. F. Souza, V. A. Duarte,L. H. S. Crespo, M. C. Silva, R. M. Pontes and V. C. Almeida, J.Hazard. Mater., 371, 499 (2019).
19. R.a. Markets, https://www.researchandmarkets.com/reports/4997604/paracetamol-market-growth-trends-covid-19 (2021).
20. S. Pandolfi, V. Simonetti, G. Ricevuti and S. Chirumbolo, J. Med.Virol., 93, 5704 (2021).
21. R. Cairns and J. A. Brown, Med. J. Aust., 211, 218 (2019).
22. W. J. Lee, P. S. Goh, W. J. Lau and A. F. Ismail, Arab. J. Sci. Eng., 45,7109 (2020).
23. S. Y. Bunting, D. J. Lapworth, E. J. Crane, J. Grima-Olmedo, A.Koroša, A. Kuczyńska, N. Mali, L. Rosenqvist, M. E. van Vliet, A.Togola and B. Lopez, Environ. Pollut., 269, 115945 (2021).
24. B. Nunes, Non-steroidal anti-inflammatory drugs in water: emerging contaminants and ecological impact, Springer International Publishing, Cham (2020).
25. D. Spreitzer and J. Schenk, Steel Res. Int., 90, 1900108 (2019).
26. D. Cao, H. Li, L. Pan, J. Li, X. Wang, P. Jing, X. Cheng, W. Wang, J.Wang and Q. Liu, Sci. Rep., 6, 32360 (2016).
27. S. B. Kanungo and S. K. Mishra, J. Therm. Anal., 46, 1487 (1996).
28. L.-L. Sui, L.-N. Peng and H.-B. Xu, Korean J. Chem. Eng., 38, 498 (2021).
29. M. I. Dar and S. A. Shivashankar, RSC Adv., 4, 4105 (2014).
30. B. Ahmmad, K. Leonard, M. Shariful Islam, J. Kurawaki, M.Muruganandham, T. Ohkubo and Y. Kuroda, Adv. Powder Technol., 24, 160 (2013).
31. D. E. Fouad, C. Zhang, H. El-Didamony, L. Yingnan, T. D. Mekuria and A. H. Shah, Results Phys., 12, 1253 (2019).
32. P. J. Sephra, P. Baraneedharan, M. Sivakumar, T. D. Thangadurai and K. Nehru, J. Mater. Sci.: Mater. Electron., 29, 6898 (2018).
33. M. Tadic, D. Trpkov, L. Kopanja, S. Vojnovic and M. Panjan, J.Alloys Compd., 792, 599 (2019).
34. G. Ohemeng-Boahen, D. D. Sewu, H. N. Tran and S. H. Woo, Colloids Surf. A, 625, 126911 (2021).
35. S. Dashamiri, M. Ghaedi, K. Dashtian, M. R. Rahimi, A. Goudarzi and R. Jannesar, Ultrason. Sonochem., 31, 546 (2016).
36. K. E. Waters, N. A. Rowson, R. W. Greenwood and A. J. Williams,Sep. Purif. Technol., 56, 9 (2007).
37. V. Ranjithkumar, S. Sangeetha and S. Vairam, J. Hazard. Mater.,273, 127 (2014).
38. V. Bernal, L. Giraldo and J. C. Moreno-Piraján, Thermochim. Acta,683, 178467 (2020).
39. D. Nematollahi, H. Shayani-Jam, M. Alimoradi and S. Niroomand,Electrochim. Acta, 54, 7407 (2009).
40. M. Galhetas, M. A. Andrade, A. S. Mestre, E. Kangni-foli, M. J. Villa de Brito, M. L. Pinto, H. Lopes and A. P. Carvalho, Phys. Chem.Chem. Phys., 17, 12340 (2015).
41. I. C. Afolabi, S. I. Popoola and O. S. Bello, Spectrochim. Acta A,243, 118769 (2020).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로