Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 19, 2023
Revised July 17, 2023
Accepted July 21, 2022
- Acknowledgements
- This work was supported by the Basic Study and Interdisciplinary R&D Foundation Fund of the University of Seoul (2023).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Acoustic performance of flexible polyurethane composite foams filled with melamine particles
Abstract
PU foams are widely used in the automobile industry not only for their lightweight properties, but also as
sound-absorbing and seat cushioning materials. The effects of particles on the sound absorption properties of PU composite foams were investigated. PU foams containing 3 wt% melamine particles showed excellent sound absorption
properties. However, when the particle content exceeded 3 wt%, particle agglomeration occurred, leading to reduced
sound absorption. A dispersant was added during the fabrication process to improve the interfacial compatibility
between the PU matrix and melamine particles, resulting in a well-developed cavity and pore structure. The sound
absorption characteristics of the PU composite foams were significantly improved in the frequency range below
2,000 Hz. Our study highlights the importance of adjusting the concentration of particles and optimizing the cavity and
pore structure of the material for achieving better sound absorption properties in PU composite foams.
References
2. J. G. Gwon, S. K. Kim and J. H. Kim, Mater. Des., 89, 448 (2016).
3. G. Sung, S. K. Kim, J. W. Kim and J. H. Kim, Polym. Test., 53, 156 (2016).
4. S. H. Baek, H. J. Choi and J. H. Kim, Polym. Korea, 44, 91 (2020).
5. J. Su, L. Zheng and Z. Deng, Appl. Acoust., 156, 319 (2019).
6. V. Guna, C. Yadav, B. R. Maithri, M. Ilangovan, F. Touchaleaume,B. Saulnier, Y. Grohens and N. Reddy, J. Build. Eng., 41, 102433 (2021).
7. J. Liu, W. Bao, L. Shi, B. Zuo and W. Gao, Appl. Acoust., 76, 128 (2014).
8. J. G. Gwon, G. Sung and J. H. Kim, Int. J. Precis. Eng. Manuf., 16, 2299 (2015).
9. J. G. Gwon, S. K. Kim and J. H. Kim, J. Porous Mat., 23, 465 (2016).
10. L. Cao, Q. Fu, Y. Si, B. Ding and J. Yu, Compos. Commun., 10, 25 (2018).
11. S. K. Kim, G. Sung, J. G. Gwon and J. H. Kim, Int. J. Precis. Eng. Manuf. - Green Technol., 3, 367 (2016).
12. G. Sung and J. H. Kim, Korean J. Chem. Eng., 34, 1222 (2017).
13. G. Sung, J.S. Kim and J.H. Kim, Polym. Adv. Technol., 29, 852 (2018).
14. H. Choe and J. H. Kim, J. Ind. Eng. Chem., 69, 153 (2019).
15. G. Sung, J. W. Kim and J. H. Kim, J. Ind. Eng. Chem., 44, 99 (2016).
16. G. Sung and J. H. Kim, Compos. Sci. Technol., 146, 147 (2017).
17. H. Choe, G. Sung and J. H. Kim, Compos. Sci. Technol., 156, 19 (2018).
18. H. Choe, J. H. Lee and J. H. Kim, Compos. Sci. Technol., 194, 108153 (2020).
19. S. H. Baek and J. H. Kim, Compos. Sci. Technol., 198, 108325 (2020).
20. V. Ribeiro Da Silva, M. A. Mosiewicki, M. I. Yoshida, M. Coelho Da Silva, P. M. Stefani and N. E. Marcovich, Polym. Test., 32, 438 (2013).
21. G. Tang, X. Liu, L. Zhou, P. Zhang, D. Deng and H. Jiang, Adv. Powder Technol., 31, 279 (2020).
22. A. König, U. Fehrenbacher, T. Hirth and E. Kroke, J. Cell. Plast., 44, 469 (2008).
23. A. L. Daniel-da-Silva, J. C. M. Bordado and J. M. Martín-Martínez, J. Appl. Polym. Sci., 107, 700 (2008).
24. M. J. Elwell, A. J. Ryan, H. J. M. Gru and H. C. Van Lieshout, Macromolecules, 29, 2960 (1996).
25. M. J. Elwell, A. J. Ryan, H. J. M. Grünbauer and H. C. Van Lieshout, Polymer, 37, 1353 (1996).
26. M. M. Bernal, M. A. Lopez-Manchado and R. Verdejo, Macromol.Chem. Phys., 212, 971 (2011).
27. R. Nadiv, G. Vasilyev, M. Shtein, A. Peled, E. Zussman and O.Regev, Compos. Sci. Technol., 133, 192 (2016).
28. S. Farrokhpay, Adv. Colloid Interface Sci., 151, 24 (2009).
29. G. Sang, P. Xu, T. Yan, V. Murugadoss, N. Naik, Y. Ding and Z. Guo, Nano-Micro Lett., 13 (2021).
30. L. J. Lee, C. Zeng, X. Cao, X. Han, J. Shen and G. Xu, Compos. Sci. Technol., 65, 2344 (2005).
31. E. M. Hotze, T. Phenrat and G. V. Lowry, J. Environ. Qual., 39, 1909 (2010).
32. P. Cimavilla-Román, S. Perez-Tamarit, A. Vananroye, P. Moldenaers and M. Ángel Rodriguez-Pérez, Eur. Polym. J., 176, 111398 (2022).
33. O. Doutres, N. Atalla and K. Dong, J. Appl. Phys., 110, 064901 (2011).
34. G. C. Gardner, M. E. O’leary, S. Hansen and J. Q. Sun, Appl. Acoust., 64, 229 (2003).
35. U. Berardi and G. Iannace, Build. Environ., 94, 840 (2015).
36. H. J. Choi and J. H. Kim, Polym. Korea, 45, 143 (2021).
37. H. J. Choi and J. H. Kim, Korean J. Chem. Eng., 39, 1072 (2022).
38. J. H. Park, S. H. Yang, H. R. Lee, C. Bin Yu, S. Y. Pak, C. S. Oh, Y. J. Kang and J. R. Youn, J. Sound Vibr., 397, 17 (2017).