Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 16, 2023
Revised July 15, 2023
Accepted July 21, 2023
- Acknowledgements
- Titanium Anode, Electrocatalysis, Oxygen Evolution Reaction, Mn-Co3O4/CeO2@C, Copper Electrodeposition
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
The electrocatalysis of Mn-Co3O4/CeO2@C particles with different Ce content modified Ti/PbO2 anode and its application for copper electrodeposition
Abstract
The oxygen evolution kinetics of industrial copper electrodeposition is slow, resulting in low electrocatalytic activity and high energy consumption. In this work, a quaternary composite of carbon coated active particles containing Mn, Co and Ce were prepared (Mn-Co3O4/CeO2@C), and Ti/Sb-SnO2/PbO2 electrode doped with these active
particles was prepared by co-electrodeposition. The microstructure and chemical composition of the electrode was
characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffractometry
(XRD). Linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS) and Tafel polarization curve
(Tafel) were used to study the electrochemical properties of anode materials. The results showed that the doping of
Mn-Co3O4/CeO2@C active particles promoted the crystal transition of PbO2, decreased the average grain size, and the
doping of Ce increases the average valence state of Co. The modified titanium electrode showed excellent catalytic
activity of the oxygen evolution reaction (OER) characteristics. The overpotential of the doped Ti/Sb-SnO2/PbO2 anode
was only 453 mV when the current density was 20 mA cm2
in 0.5 M H2SO4 solution, which is 508 mV lower than that
of the undoped Ti/Sb-SnO2/PbO2 anode. In simulated copper electro-deposition experiments, the cell voltage was
reduced by about 400 mV, compared to the undoped Ti/Sb-SnO2/PbO2 electrode.
Keywords
References
2. M. Stelter and H. Bombach, Adv. Eng. Mater., 6, 558 (2004).
3. Y. Liu, W. Zhu, Z. Chen, Q. Yu, Q. Hu, Z. Zheng, L. Gui and Y.Song, Int. J. Hydrogen Energy, 46, 6380 (2021).
4. V. Krstić and B. Pešovski, Hydrometallurgy, 185, 71 (2019).
5. L.C. Espinoza , P. Sepúlveda, A. García, D.M.d. Godoi and R. Salazar, Chemosphere, 251, 126674 (2020).
6. H. W. Lim, D. K. Cho, J. H. Park, S. G. Ji, Y. J. Ahn, J. Y. Kim and C. W. Lee, ACS Catal., 11, 12423 (2021).
7. A. Touni, O. A. Grammenos, A. Banti, D. Karfaridis, C. Prochaska,D. Lambropoulou, E. Pavlidou and S. Sotiropoulos, Electrochim.Acta, 390, 138866 (2021).
8. S. Pan, H. Li, D. Liu, R. Huang, X. Pan, D. Ren, J. Li, M. Shakouri,Q. Zhang, M. Wang, C. Wei, L. Mai, B. Zhang, Z. Wang, M. Graetzel and X. Zhang, Nat. Commun., 13, 2294 (2022).
9. C. Pasquini, I. Zaharieva, D. González-Flores, P. Chernev, M. R.Mohammadi, L. Guidoni, R. D. L. Smith and H. Dau, J. Am. Chem.Soc., 141, 2938 (2019).
10. X. Yang, H. Li, A. Lu, S. Min, Z. Idriss, M. N. Hedhili, K. Huang,H. Idriss and L. Li, Nano Energy, 25, 42 (2016).
11. A. Li, S. Kong, C. Guo, H. Ooka, K. Adachi, D. Hashizume, Q.Jiang, H. Han, J. Xiao and R. Nakamura, Nat. Catal., 5, 109 (2022).
12. B. Chen, W. Yan, Y. He, H. Huang, H. Leng, Z. Guo and J. Liu, J.Electrochem. Soc., 166, 119 (2019).
13. X. Wang, L. Wang, D. Wu, D. Yuan, H. Ge and X. Wu, Sci. Total Environ., 855, 158880 (2023).
14. T. Lwai, M. Murakami, S. Takai, T. Yabutsuka and T. Yao, J. Alloy Compd., 780, 85 (2019).
15. K. Irikura, N. Bocchi, R. C. Rocha-Filho, S. R. Biaggio, J. Iniesta and V. Montiel, J. Environ. Manage., 183, 306 (2016).
16. S. Chen, B. Chen, S. Wang , W. Yan, Y. He, Z. Guo and R. Xu, J. Alloy. Compd., 815, 152551 (2020).
17. B. Yu, R. Xu, B. Chen, X. Wang and S. He, Int. J. Hydrogen Energy,48, 11131 (2023).
18. S. He, R. Xu, L. Sun, Y. Fan, Z. Zhao, H. Liu and H. Lv, Hydrometallurgy, 194, 105357 (2020).
19. C. Zhang, J. Liu and B. Chen, Ceram. Int., 44, 19735 (2018).
20. X. Wang, J. Wang, W. Jiang, C. Chen, B. Yu and R. Xu, Sep. Purif. Technol., 272, 118916 (2021).
21. J. Wei, J. Wang, X. Wang, W. Jiang, N. Hu, L. Wang, M. Li, R. Xu and L. Yang, Electrochim. Acta, 432, 141221 (2022).
22. X. Wang, J. Wang, B. Yu, W. Jiang, J. Wei, B. Chen, R. Xu and L. Yang, J. Hazard. Mater., 428, 128212 (2022).
23. C. Tang, Y. Lu, F. Wang , H. Niu, L. Yu and J. Xue, Electrochim. Acta, 331, 165381 (2020).
24. Y. Liu, T. Sun, Q. Su, Y. Tang , X. Xu, M. Akram and B. Jiang, J. Colloid Interface Sci., 575, 254 (2020).
25. W. Alnoush, R. Black and D. Higgins, Chem. Catal., 1, 997 (2021).
26. Z. Zhao, Y. Long, S. Luo, Y. Luo, M. Chen and J. Ma, J. Energy Chem., 60, 546 (2021).
27. H. Kim, E. Hwang, H. Park, B. Lee, J. H. Jang, H. Kim, S. H. Ahn and S. Kim, Appl. Catal. B-Environ., 206, 608 (2017).
28. O. Shmychkova, T. Luk’yanenko, R. Amadelli and A. Velichenko, J. Electroanal. Chem., 706, 86 (2013).
29. H. Jin, X. Zhang, Y. Yu and X. Chen, Chem. Eng. J., 435, 135167 (2022).
30. Y. Liu, C. Ma, Q. Zhang, W. Wang, P. Pan, L. Gu, D. Xu, J. Bao and Z. Dai, Adv. Mater., 31, 1900062 (2019).
31. Z. Wei, X. Kang, S. Xu, X. Zhou, B. Jia and Q. Feng, Chin. J. Chem.Eng., 32, 191 (2021).
32. T. Shinagawa, A. T. Garcia-Esparza and K. Takanabe, Sci. Rep., 5, 13801 (2015).
33. C. C. L. McCrory, S. Jung, J. C. Peters and T. F. Jaramillo, J. Am. Chem. Soc., 135, 16977 (2013).
34. J. Huang, H. Sheng, R. D. Ross, J. Han, X. Wang, B. Song and S. Jin, Nat. Commun., 12, 3036 (2021).